Inferences for Multivariate Semiparametric and Nonparametric Models with Applications to Risk Management
多元半参数和非参数模型的推论及其在风险管理中的应用
基本信息
- 批准号:0355179
- 负责人:
- 金额:$ 17.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-09-01 至 2005-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractPI: Jianqing FanDMS-0204329The objectives of this proposal are to develop new and widely applicable approaches for semiparametric and nonparametric estimation and inferences, to study theoretical properties of these new approaches, and to evaluate their efficacy in data analyses. This proposal not only introduces a number of innovative techniques, but also provides various new and deep insights into statistical foundation. It will have significant impact on the future research of statistical methodologies, computation and theories. In particular, three inter-related areas are proposed for study. Firstly, a family of flexible semiparametric and nonparametric models is introduced. This allows one to study the extent to which response variables are associated with their covariates. The generalized likelihood ratio statistics is proposed for testing various hypotheses in multivariate semiparametric and nonparametric models. Secondly, new semiparametric and nonparametric models are proposed for understanding interest-rate dynamics, and stock price volatilities. Furthermore, the information on state-domain is incorporated to improve the efficiency of volatility estimation for bonds and to more accurately estimate the market risks of a portofolio. Thirdly, new techniques for variable selection, in the presence of a large number of variables, are proposed via nonconcave penalized likelihood. The innovation is that they estimate parameters and select variables simultaneously. The above techniques are widely applicable to many scientific and engineering problems. Multivariate nonparametric, semiparametric and large parametric models have been widely used. Statistical questions often arise such as if certain variables or factors are important to public health; if some risk factors contribute significantly to the survival time of patients; and if interest-rate dynamics or stock price processes are time-dependent or follow certain famous hypotheses, among others. Yet, there are no generally applicable tools available to answer these questions in multivariate semiparametric and non-saturated nonparametric models. The techniques proposed here permit one to objectively test scientific hypotheses without restrictive model assumptions. The techniques allow to better price financial derivatives and manage investment risk, to identify important risk variables and their possible interactions in the analysis of large epidemiological studies and to scrutinize famous hypotheses on stock prices
摘要PI:Jianqing FanDMS-0204329该提案的目标是开发新的且广泛适用的半参数和非参数估计和推理方法,研究这些新方法的理论特性,并评估其在数据分析中的有效性。该提案不仅引入了许多创新技术,而且还为统计基础提供了各种新的、深入的见解。它将对未来统计方法、计算和理论的研究产生重大影响。特别是,建议研究三个相互关联的领域。首先,介绍了一系列灵活的半参数和非参数模型。这使得人们能够研究响应变量与其协变量相关的程度。提出广义似然比统计来检验多元半参数和非参数模型中的各种假设。其次,提出了新的半参数和非参数模型来理解利率动态和股票价格波动。此外,纳入状态域信息可以提高债券波动率估计的效率,更准确地估计投资组合的市场风险。第三,在存在大量变量的情况下,通过非凹惩罚似然提出了变量选择的新技术。创新之处在于他们同时估计参数和选择变量。上述技术广泛适用于许多科学和工程问题。多元非参数、半参数和大参数模型已得到广泛应用。经常出现统计问题,例如某些变量或因素对公共卫生是否重要;某些危险因素是否对患者的生存时间有显着影响;利率动态或股票价格过程是否依赖于时间或遵循某些著名的假设等。然而,在多元半参数和非饱和非参数模型中,没有普遍适用的工具可以回答这些问题。这里提出的技术允许人们在没有限制性模型假设的情况下客观地检验科学假设。这些技术可以更好地为金融衍生品定价并管理投资风险,在大型流行病学研究分析中识别重要的风险变量及其可能的相互作用,并仔细审查有关股票价格的著名假设
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianqing Fan其他文献
Deep Neural Networks for Nonparametric Interaction Models with Diverging Dimension
具有发散维度的非参数交互模型的深度神经网络
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Sohom Bhattacharya;Jianqing Fan;Debarghya Mukherjee - 通讯作者:
Debarghya Mukherjee
Dynamic nonparametric filtering with application to volatility estimation
动态非参数滤波及其在波动率估计中的应用
- DOI:
10.1016/b978-044451378-6/50021-1 - 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Ming;Jianqing Fan;V. Spokoiny - 通讯作者:
V. Spokoiny
Improving Covariate Balancing Propensity Score : A Doubly Robust and Efficient Approach ∗
提高协变量平衡倾向评分:双重稳健和高效的方法*
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Jianqing Fan;K. Imai;Han Liu;Y. Ning;Xiaolin Yang - 通讯作者:
Xiaolin Yang
Features of Big Data and sparsest solution in high confidence set
- DOI:
10.1201/b16720-48 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Jianqing Fan - 通讯作者:
Jianqing Fan
Approaches to High-Dimensional Covariance and Precision Matrix Estimations
高维协方差和精度矩阵估计的方法
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Jianqing Fan;Yuan Liao;Han Liu - 通讯作者:
Han Liu
Jianqing Fan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianqing Fan', 18)}}的其他基金
Interface of Statistical Learning and Optimal Decisions
统计学习和最优决策的接口
- 批准号:
2210833 - 财政年份:2022
- 资助金额:
$ 17.58万 - 项目类别:
Continuing Grant
DMS/NIGMS 2: Collaborative Research: Developing Statistical Learning Methods for Revealing the Molecular Signatures of Microvascular Changes in Neural Injury
DMS/NIGMS 2:合作研究:开发统计学习方法来揭示神经损伤中微血管变化的分子特征
- 批准号:
2053832 - 财政年份:2021
- 资助金额:
$ 17.58万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Flexible Network Inference
FRG:协作研究:灵活的网络推理
- 批准号:
2052926 - 财政年份:2021
- 资助金额:
$ 17.58万 - 项目类别:
Standard Grant
Collaborative Research: Statistical Methods for RNA-seq Based Transcriptomic Analysis of Macrophage Function in Spinal Cord Injury
合作研究:基于RNA-seq的脊髓损伤中巨噬细胞功能转录组学分析的统计方法
- 批准号:
1662139 - 财政年份:2017
- 资助金额:
$ 17.58万 - 项目类别:
Continuing Grant
Robust and Distributed Statistical Learning from Big Data
从大数据中进行稳健的分布式统计学习
- 批准号:
1712591 - 财政年份:2017
- 资助金额:
$ 17.58万 - 项目类别:
Continuing Grant
Collaborative Research: Interface of Probability and Statistics for High-dimensional Inference
合作研究:高维推理的概率统计接口
- 批准号:
1406266 - 财政年份:2014
- 资助金额:
$ 17.58万 - 项目类别:
Continuing Grant
Statistical Inferences on Massive Data
海量数据统计推断
- 批准号:
1206464 - 财政年份:2012
- 资助金额:
$ 17.58万 - 项目类别:
Continuing Grant
Workshop on: Discovery in Complex or Massive Datasets: Common Statistical Themes
研讨会:复杂或海量数据集中的发现:常见统计主题
- 批准号:
0751568 - 财政年份:2007
- 资助金额:
$ 17.58万 - 项目类别:
Standard Grant
Collaborative Research: Development of bioinformatic methods for studying gene expression network inflammation and neuronal regeneration
合作研究:开发用于研究基因表达网络炎症和神经元再生的生物信息学方法
- 批准号:
0714554 - 财政年份:2007
- 资助金额:
$ 17.58万 - 项目类别:
Continuing Grant
High-dimensional statistical learning and inference
高维统计学习和推理
- 批准号:
0704337 - 财政年份:2007
- 资助金额:
$ 17.58万 - 项目类别:
Continuing Grant
相似海外基金
A novel damage characterization technique based on adaptive deconvolution extraction algorithm of multivariate AE signals for accurate diagnosis of osteoarthritic knees
基于多变量 AE 信号自适应反卷积提取算法的新型损伤表征技术,用于准确诊断膝关节骨关节炎
- 批准号:
24K07389 - 财政年份:2024
- 资助金额:
$ 17.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Complexity of couplings in multivariate time series via a marriage of ordinal pattern analysis with topological data analysis
通过序数模式分析与拓扑数据分析的结合研究多元时间序列中耦合的复杂性
- 批准号:
23K03219 - 财政年份:2023
- 资助金额:
$ 17.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Ethnic-racial discrimination influences on neural representation of threat learning in Latina girls: A multivariate modeling approach
职业:民族种族歧视对拉丁裔女孩威胁学习的神经表征的影响:多元建模方法
- 批准号:
2239067 - 财政年份:2023
- 资助金额:
$ 17.58万 - 项目类别:
Continuing Grant
Multivariate machine learning analysis for identyfing neuro-anatomical biomarkers of anorexia and classifying anorexia subtypes using MR datasets.
多变量机器学习分析,用于识别厌食症的神经解剖生物标志物并使用 MR 数据集对厌食症亚型进行分类。
- 批准号:
23K14813 - 财政年份:2023
- 资助金额:
$ 17.58万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CDS&E: Immersive Virtual Reality for Discovering Hidden Chemical Information and Improving Multivariate Modeling and Predication
CDS
- 批准号:
2305020 - 财政年份:2023
- 资助金额:
$ 17.58万 - 项目类别:
Standard Grant
Applications of Algebraic Geometry to Multivariate Gaussian Models
代数几何在多元高斯模型中的应用
- 批准号:
2306672 - 财政年份:2023
- 资助金额:
$ 17.58万 - 项目类别:
Continuing Grant
Multivariate analysis methods for optical imaging measurements of macroscopic inhomogeneous structures
宏观非均匀结构光学成像测量的多元分析方法
- 批准号:
23K03283 - 财政年份:2023
- 资助金额:
$ 17.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Simplification of solution matrices in multivariate data analysis by integrating of sparseness and simple structure
通过稀疏性和简单结构的结合简化多元数据分析中的解矩阵
- 批准号:
23K16854 - 财政年份:2023
- 资助金额:
$ 17.58万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of non-invasive measurement and induction of multivariate sharp-wave ripples in the human brain
开发人脑多元尖波波纹的非侵入性测量和感应
- 批准号:
23K14679 - 财政年份:2023
- 资助金额:
$ 17.58万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Exploring and exploiting new representations for multivariate extremes
探索和利用多元极值的新表示
- 批准号:
EP/X010449/1 - 财政年份:2023
- 资助金额:
$ 17.58万 - 项目类别:
Research Grant