Free boundary problems and Viscosity solutions.
自由边界问题和粘度解决方案。
基本信息
- 批准号:0401436
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2006-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal DMS-0401436PIs: David Jerison and Christina Kim (MIT)Title: Free boundary problems and viscosity solutionsABSTRACTThe main focus of this project is on problems in nonlinear differentialequations in which the boundary is unknown and has to be determined: aso-called 'free boundary'. The PI is interested in the free boundaryproblems with nonlocal structure, where velocities of the free boundariesdepend on global characteristics of the solutions. The goal is to gain abetter understanding of the following aspects of such problems: theexistence and uniqueness of solutions in global time; asymptotic behaviorof the free boundary as time reaches zero or infinity; waiting timephenomena; and the regularity properties of the free boundaries. The PIemploys the notion of viscosity solutions to address the behavior ofaformentioned free boundary problems. This approach has been succesfullyused to study nonlinear PDEs and local laws of motions such as 'motion bymean curvature'. The great advantage of this approach is its seamlesshandling of topological transitions such as pinch-off. The key-step of thetheory of viscosity solutions is to establish a comparison principle. Thisproperty leads, in turn, to the existence of solutions and allows for thefurther study of their properties. Techniques coming from quantitativeversions of the comparison principle and harmonic analysis are employed tostudy further properties of solutions.The classical Stefan problem of melting ice is an example of the freeboundary problems. In the Stefan problem, one is modeling the evolution ofthe polar ice caps, and the question of interest is the location, as afunction of time, of the interface between water and ice. The particularproblems to which the methods of the present proposal apply also include:theHele-Shaw problem which models fluid motion in a narrow cell betweentwo parallel plates; flame fronts; and the interface between oil andwater in a flow. This is an area where modeling and computation are farahead of mathematical analysis. The main obstacle for developing awell-defined notion for general motion of interfaces is that initiallysmooth boundaries moving under smooth velocities may develop singularitiesin finite time. The hitting and splitting of interfaces in flamepropagation is an example. It is natural to wonder whether thecontinuation of the solutions is uniquely determined after pinch-off, orwhether additional constitutive information might be required at thesingular time. The impact of the singularity to the other part of the freeboundary is another interesting question. The PI plans to investigatethese questions in local and global perspectives.
提案DMS-0401436 PI:大卫杰里森和克里斯蒂娜金(麻省理工学院)标题:自由边界问题和粘性解摘要该项目的主要重点是在非线性微分方程中的问题,其中边界是未知的,必须确定:所谓的“自由边界”。PI研究具有非局部结构的自由边界问题,其中自由边界的速度依赖于解的整体特征。我们的目标是更好地理解这类问题的以下几个方面:整体时间内解的存在性和唯一性;自由边界在时间到达零时或无穷大时的渐近行为;等待时间现象;以及自由边界的正则性。PI采用粘性解的概念来处理前面提到的自由边界问题。这种方法已成功地用于研究非线性偏微分方程和局部运动规律,如“平均曲率运动”。这种方法的最大优点是对夹断等拓扑转变的处理很好。粘性溶液理论的关键是建立比较原理。这一性质反过来又导致解的存在,并允许进一步研究其性质。利用比较原理的定量形式和调和分析的技巧,进一步研究了解的性质,并以经典的Stefan融冰问题为例进行了讨论。在斯特凡问题中,一个是模拟极地冰盖的演变,而感兴趣的问题是水和冰之间的界面的位置,作为时间的函数。本建议的方法适用的具体问题还包括:Hele-Shaw问题,该问题模拟了两个平行板之间的狭窄单元中的流体运动;火焰前沿;以及油和水之间的界面。这是一个建模和计算远远领先于数学分析的领域。发展一个定义明确的界面一般运动概念的主要障碍是,初始光滑边界在光滑速度下运动可能在有限时间内发展奇异性。火焰传播中界面的碰撞和分裂就是一个例子。很自然地,人们会想知道夹断后解的连续性是否是唯一确定的,或者在单一时刻是否需要额外的本构信息。奇点对自由边界另一部分的影响是另一个有趣的问题。 PI计划从本地和全球角度调查这些问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Inwon Kim其他文献
Regularity and Nondegeneracy for Tumor Growth with Nutrients
- DOI:
10.1007/s00205-024-02081-w - 发表时间:
2025-01-11 - 期刊:
- 影响因子:2.400
- 作者:
Carson Collins;Matt Jacobs;Inwon Kim - 通讯作者:
Inwon Kim
Mean Field Limit for Congestion Dynamics in One Dimension
一维拥塞动力学的平均场极限
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Inwon Kim;A. Mellet;Jeremy Sheung - 通讯作者:
Jeremy Sheung
Head and Tail Speeds of Mean Curvature Flow with Forcing
- DOI:
10.1007/s00205-019-01423-3 - 发表时间:
2019-07-17 - 期刊:
- 影响因子:2.400
- 作者:
Hongwei Gao;Inwon Kim - 通讯作者:
Inwon Kim
Inwon Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Inwon Kim', 18)}}的其他基金
Nonlinear Partial Differential equations and boundary conditions.
非线性偏微分方程和边界条件。
- 批准号:
1300445 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Continuing Grant
Free Boundary Problems and nonlinear PDEs
自由边界问题和非线性偏微分方程
- 批准号:
0970072 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
Free Boundary Problems and Viscosity solutions
免费边界问题和粘度解决方案
- 批准号:
0700732 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
Free boundary problems and Viscosity solutions.
自由边界问题和粘度解决方案。
- 批准号:
0627896 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
流体湍流运动的相关数学分析
- 批准号:10971174
- 批准年份:2009
- 资助金额:25.0 万元
- 项目类别:面上项目
不可压流体力学方程中的一些问题
- 批准号:10771177
- 批准年份:2007
- 资助金额:17.0 万元
- 项目类别:面上项目
关于任意截面导体壁中的环状形非圆截面等离子体稳定性的研究
- 批准号:10375050
- 批准年份:2003
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Parabolic and elliptic boundary value and free boundary problems
抛物线和椭圆边值以及自由边界问题
- 批准号:
2349846 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Well-Posedness and Singularity Formation in Applied Free Boundary Problems
应用自由边界问题中的适定性和奇异性形成
- 批准号:
2307638 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Shape Optimization, Free Boundary Problems, and Geometric Measure Theory
形状优化、自由边界问题和几何测量理论
- 批准号:
2247096 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Free Boundary Problems for Aggregation Phenomena and other Partial Differential Equations
聚集现象和其他偏微分方程的自由边界问题
- 批准号:
2307342 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Dynamical analysis of foliated structure in free boundary problems
自由边界问题中叶状结构的动力学分析
- 批准号:
22KK0230 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Mathematical Analysis of Fluid Free Boundary Problems
无流体边界问题的数学分析
- 批准号:
2153992 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Asymptotic analysis and behavior of free boundary for nonlinear parabolic problems
非线性抛物线问题的渐近分析和自由边界行为
- 批准号:
22K03387 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Regularity and Stability Analysis of Free-Boundary Problems in Fluid Dynamics
流体动力学自由边界问题的规律性和稳定性分析
- 批准号:
2205710 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Probabilistic Approach to Singular Free Boundary Problems and Applications
奇异自由边界问题的概率方法及其应用
- 批准号:
2108680 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant