International Conference on Multiscale Methods and Partial Differential Equations; August 26-27, 2005; Los Angeles, CA
多尺度方法和偏微分方程国际会议;
基本信息
- 批准号:0435593
- 负责人:
- 金额:$ 1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-01-01 至 2005-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The International Conference on Multiscale Methods and Partial Differential Equations will be held at UCLA on August 26-27, 2005. The objective of this conference is to bring together researchers, students and practitioners with interest in the theoretical, computational and practical aspects of multiscale problems and related partial differential equations. The conference will provide a forum to exchange and stimulate new ideas from different disciplines, and to formulate new challenging multiscale problems that will have impact in applications. Despite considerable progress in a wide range of the sciences, and a growing awareness of the importance of multiscale approaches, currently there is fragmentation in multiscale methodology, its rigorous analysis and its applications. There is an urgent need to develop systematic multiscale analysis and computationalmethods that can be applied to a wide range of practical problems. This effort poses new challenge to the theory of partial differential equations. By bringing together analysts, experts in multiscale modeling,and computational scientists, we can identify the key issues in multiscale mathematics and common themes of various multiscale problems arising from different disciplines. This provides a unique opportunity to make significant advances in this area.Advances of computational sciences in the past few decades have resulted in an increase of several orders of magnitude in computing power. Modeling and simulations of physical problems in a narrow range of scales have been quite successful. However, to solve complex physical problems which involves a wide range of spatial or temporal scales remains to be a major challenge in many scientific disciplines. These problems are of vital importance to our nationalinterests, affecting our policy and technology advances in areas such as environmental science, energy, biology, materials science, and information science. Multiscale analysis, modeling, and simulation is an emerging new research area which has already made significant impact in many scientific disciplines. There have been many exciting recent, but problem specific, advances in multiscale analysis, modeling and simulation. Up to now, most work on multiscale modeling and computation has been developed within an individual discipline. Breakthroughs in specific domains could be applicable in a broader context, but remain isolated. As a result, multiscale descriptions are nowhere near their potential level of impact, including in education and industry. One of the main purposes of our multiscale conference is to integrate these isolated efforts and diverse developments. The conference will also provide a special opportunity to connect applied mathematicians with domain experts in multiscale modeling and computation. This will help bridge the gap in research and knowledge transfer between mathematics and other application disciplines.
多尺度方法和偏微分方程国际会议将于2005年8月26-27日在加州大学洛杉矶分校举行。这次会议的目的是聚集对多尺度问题和相关偏微分方程的理论、计算和实践方面感兴趣的研究人员、学生和实践者。会议将提供一个论坛,交流和激发不同学科的新想法,并制定新的具有挑战性的、将在应用中产生影响的多尺度问题。尽管在广泛的科学领域取得了长足的进步,人们越来越认识到多尺度方法的重要性,但目前在多尺度方法、其严格分析及其应用方面仍存在支离破碎的情况。迫切需要发展可应用于广泛的实际问题的系统的多尺度分析和计算方法。这对偏微分方程组理论提出了新的挑战。通过将分析师、多尺度建模专家和计算科学家聚集在一起,我们可以确定多尺度数学中的关键问题,以及来自不同学科的各种多尺度问题的共同主题。这为在这一领域取得重大进展提供了一个独特的机会。在过去的几十年里,计算科学的进步导致了计算能力的几个数量级的增加。在很小的尺度范围内对物理问题进行建模和模拟已经相当成功。然而,解决涉及大范围空间或时间尺度的复杂物理问题仍然是许多科学学科面临的主要挑战。这些问题关系到我们的国家利益,影响到我们在环境科学、能源、生物、材料科学和信息科学等领域的政策和技术进步。多尺度分析、建模和仿真是一个新兴的研究领域,已经在许多科学学科中产生了重大影响。最近在多尺度分析、建模和模拟方面取得了许多令人兴奋的进展,但问题具体。到目前为止,关于多尺度建模和计算的大部分工作都是在单个学科内进行的。在特定领域的突破可能适用于更广泛的背景,但仍然是孤立的。因此,多尺度描述远远达不到其潜在影响水平,包括在教育和工业方面。我们多规模会议的主要目的之一是整合这些孤立的努力和不同的发展。会议还将提供一个特殊的机会,将应用数学家与多尺度建模和计算领域的专家联系起来。这将有助于弥合数学和其他应用学科之间在研究和知识转移方面的差距。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Hou其他文献
On the stability of the unsmoothed Fourier method for hyperbolic equations
- DOI:
10.1007/s002110050019 - 发表时间:
1994-02-01 - 期刊:
- 影响因子:2.200
- 作者:
Jonathan Goodman;Thomas Hou;Eitan Tadmor - 通讯作者:
Eitan Tadmor
On DoF Conservation in MIMO Interference Cancellation Based on Signal Strength in the Eigenspace
基于特征空间信号强度的MIMO干扰消除中自由度守恒
- DOI:
10.1109/tmc.2021.3126449 - 发表时间:
2023 - 期刊:
- 影响因子:7.9
- 作者:
Yongce Chen;Shaoran Li;Chengzhang Li;Huacheng Zeng;Brian Jalaian;Thomas Hou;Wenjing Lou - 通讯作者:
Wenjing Lou
Minimizing Age of Information Under General Models for IoT Data Collection
最小化物联网数据收集通用模型下的信息年龄
- DOI:
10.1109/tnse.2019.2952764 - 发表时间:
2020 - 期刊:
- 影响因子:6.6
- 作者:
Chengzhang Li;Shaoran Li;Yongce Chen;Thomas Hou;Wenjing Lou - 通讯作者:
Wenjing Lou
On the performance of MIMO-based ad hoc networks under imperfect CSI
不完善CSI下基于MIMO的自组织网络性能研究
- DOI:
10.1109/milcom.2008.4753523 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Jia Liu;Thomas Hou - 通讯作者:
Thomas Hou
Thomas Hou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Hou', 18)}}的其他基金
Analysis of Singularity Formation in Three-Dimensional Euler Equations and Search for Potential Singularities in Navier-Stokes Equations
三维欧拉方程奇异性形成分析及纳维-斯托克斯方程潜在奇异性搜索
- 批准号:
2205590 - 财政年份:2022
- 资助金额:
$ 1万 - 项目类别:
Continuing Grant
Solving Multiscale Problems and Data Classification with Subsampled Data by Integrating Partial Differential Equation Analysis with Data Science
通过将偏微分方程分析与数据科学相结合,利用二次采样数据解决多尺度问题和数据分类
- 批准号:
1912654 - 财政年份:2019
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
A Computer-Assisted Analysis Framework for Studying Finite Time Singularities of the 3D Euler Equations and Related Models
用于研究 3D 欧拉方程及相关模型的有限时间奇异性的计算机辅助分析框架
- 批准号:
1907977 - 财政年份:2019
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
NeTS: Small: Smart Interference Management for Wireless Internet of Things
NetS:小型:无线物联网的智能干扰管理
- 批准号:
1617634 - 财政年份:2016
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Investigating Potential Singularities in the Euler and Navier-Stokes Equations Using an Integrated Analytical and Computational Approach
使用综合分析和计算方法研究欧拉和纳维-斯托克斯方程中的潜在奇点
- 批准号:
1613861 - 财政年份:2016
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Cognitive Green Building: A Holistic Cyber-Physical Analytic Paradigm for Energy Sustainability
CPS:协同:协作研究:认知绿色建筑:能源可持续性的整体网络物理分析范式
- 批准号:
1446478 - 财政年份:2015
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
NeTS: JUNO: Cognitive Security: A New Approach to Securing Future Large Scale and Distributed Mobile Applications
NetS:JUNO:认知安全:保护未来大规模分布式移动应用程序的新方法
- 批准号:
1405747 - 财政年份:2014
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Data-Driven Time-Frequency Analysis via Nonlinear Optimization
通过非线性优化进行数据驱动的时频分析
- 批准号:
1318377 - 财政年份:2013
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities, mixing and long time behavior in nonlinear evolution
FRG:协作研究:非线性演化中的奇异性、混合和长期行为
- 批准号:
1159138 - 财政年份:2012
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: Towards User Privacy in Outsourced Cloud Data Services
CSR:小型:协作研究:在外包云数据服务中实现用户隐私
- 批准号:
1217889 - 财政年份:2012
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
相似海外基金
Rossbypalooza 2024: A Student-led Summer School on Climate and Extreme Events Conference; Chicago, Illinois; July 22-August 2, 2024
Rossbypalooza 2024:学生主导的气候和极端事件暑期学校会议;
- 批准号:
2406927 - 财政年份:2024
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Conference: Southern California Geometric Analysis Seminar
会议:南加州几何分析研讨会
- 批准号:
2406732 - 财政年份:2024
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Conference: Scientific Assessment of the McMurdo Dry Valleys Ecosystem: Environmental Stewardship in a Time of Dynamic Change
会议:麦克默多干谷生态系统的科学评估:动态变化时期的环境管理
- 批准号:
2409327 - 财政年份:2024
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Conference: Amplituhedra, Cluster Algebras and Positive Geometry
会议:幅面体、簇代数和正几何
- 批准号:
2412346 - 财政年份:2024
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Conference: 2024 Mammalian Synthetic Biology Workshop
会议:2024年哺乳动物合成生物学研讨会
- 批准号:
2412586 - 财政年份:2024
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Travel: NSF Student Travel Grant for 2024 ACM/IEEE International Conference on Software Engineering
旅行:2024 年 ACM/IEEE 软件工程国际会议 NSF 学生旅行补助金
- 批准号:
2413092 - 财政年份:2024
- 资助金额:
$ 1万 - 项目类别:
Standard Grant