Structure of hyperbolic 3-manifolds

双曲3流形的结构

基本信息

  • 批准号:
    0504019
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-07-01 至 2012-06-30
  • 项目状态:
    已结题

项目摘要

The field of hyperbolic 3-manifolds and Kleinian groups has seen considerable progress in the last three years, with the resolution of most of the main motivational conjectures, such as Tameness, the Ending Lamination Conjecture, and the Density conjecture. These advances confirm much about our expected picture of hyperbolic 3-manifolds and their deformation spaces, and place the field in a moment of transition and opportunity. the techniques introduced in the proofs have much potential for further applications. Minsky will focus on deepening our understanding of the structure and deformation theory of hyperbolic 3-manifold, applying in particular the tools that have come out of his contribution to the solution of the Ending Lamination Conjecture. The models and estimates provided by these tools should provide an approach to a number of open questions, notably that of local connectivity of limit sets, geometric description of closed manifolds from the Heegaard decompositions, and uniformity theorems for deformation spaces (some of this work will be in collaboration with Brock, Bromberg and Canary). Another area of applications (jointly with Brock and Masur) involves the structure of geodesics in the Teichmuller space endowed with its Weil-Petersson metric. These have up till now resisted analysis but appear to be quite intimately connected to the geometry of 3-manifolds.The interactions between geometry, topology and dynamics have been a beautiful and powerful feature of mathematics and physics for more than a hundred years. Dynamics is the study of time-evolution of mathematical or physical systems, whereas geometry and topology involve "static" objects such as surfaces or higher-dimensional analogues, often the background for a dynamical process. Henri Poincare already knew that the standard round sphere, the setting of classical analysis and geometry, functioned also as a "horizon at infinity" for an exotic non-Euclidean geometry that we now call Hyperbolic space. Dynamical properties of transformations of the sphere translate to geometric properties of rigid motions of this space, and give rise to families of symmetric tilings whose structure we can study by geometric and topological methods. The complexity of these systems can constrain them so much that a combinatorial (or topological) description suffices to determine them uniquely, and this is what we call rigidity. This phenomenon occurs in many guises throughout geometry and dynamics, and is relevant to issues such as classification of systems, mapping out regions of stability and instability, deformation and bifurcation of families of systems, and probabilistic properties such as ergodicity, all of which havesignificance in both pure and applied mathematics. The particular aspects studied in this project are typical in some ways and special in others. They focus on the intricate relationships between geometry in two and three dimensions, and also on the ways in which topology, particularly of systems of curves within surfaces, determines geometry. There is also a strong emphasis on studying families of geometric structures on surfaces and three-dimensional manifolds, which are closely analogous to other families of dynamical systems.
双曲3-流形和Kleinian群领域在过去三年中取得了相当大的进展,解决了大多数主要的动机猜想,如驯服性,结束层压猜想和密度猜想。这些进展在很大程度上证实了我们对双曲3流形及其变形空间的预期,并将该领域置于一个过渡和机遇的时刻。证明中介绍的技术具有进一步应用的潜力。明斯基将专注于加深我们对双曲3流形的结构和变形理论的理解,特别是应用他对终结层压猜想的解决方案的贡献所产生的工具。这些工具提供的模型和估计应该为许多开放问题提供一种方法,特别是极限集的局部连通性,Heegaard分解的封闭流形的几何描述,以及变形空间的均匀性定理(其中一些工作将与Brock, Bromberg和Canary合作)。另一个应用领域(与Brock和Masur联合)涉及Teichmuller空间中具有Weil-Petersson度量的测地线结构。到目前为止,它们还无法进行分析,但似乎与3流形的几何结构密切相关。一百多年来,几何、拓扑和动力学之间的相互作用一直是数学和物理的一个美丽而强大的特征。动力学是对数学或物理系统的时间演化的研究,而几何学和拓扑学涉及“静态”对象,如表面或高维类似物,通常是动态过程的背景。亨利·庞加莱已经知道,标准的圆球,经典分析和几何的背景,也可以作为一种奇异的非欧几里得几何的“无限视界”,我们现在称之为双曲空间。球体变换的动力学性质转化为该空间刚性运动的几何性质,并产生对称瓷砖族,其结构可以用几何和拓扑方法研究。这些系统的复杂性对它们的约束如此之大,以至于组合(或拓扑)描述足以唯一地确定它们,这就是我们所说的刚性。这种现象在整个几何和动力学中以多种形式出现,并且与系统分类、绘制稳定和不稳定区域、系统族的变形和分岔以及遍历等概率性质等问题相关,所有这些在纯数学和应用数学中都具有重要意义。本项目所研究的特定方面在某些方面具有典型性,在另一些方面又具有特殊性。他们专注于二维和三维几何之间的复杂关系,以及拓扑,特别是曲面内曲线系统,决定几何形状的方式。也有很强的重点在研究几何结构族的表面和三维流形,这是密切类似于其他族的动力系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yair Minsky其他文献

Yair Minsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yair Minsky', 18)}}的其他基金

Deformation, topology and geometry in low dimensions
低维变形、拓扑和几何
  • 批准号:
    2005328
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Properly Discontinuous Actions on Homogeneous Spaces
均匀空间上的适当不连续动作
  • 批准号:
    1709952
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Structure and Deformation in Low-Dimensional Topology
低维拓扑中的结构和变形
  • 批准号:
    1610827
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Geometry on Groups and Spaces, August 7-12, 2014
群与空间的几何,2014 年 8 月 7-12 日
  • 批准号:
    1431070
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
The Sixth Ahlfors-Bers Colloquium
第六届 Ahlfors-Bers 研讨会
  • 批准号:
    1444972
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
COMPLEXITY AND RIGIDITY IN LOW DIMENSIONAL GEOMETRY
低维几何的复杂性和刚性
  • 批准号:
    1311844
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Challenges in Geometry, Analysis and Computation: High Dimensional Synthesis
几何、分析和计算方面的挑战:高维综合
  • 批准号:
    1207829
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
FRG:Collaborative Research: Deformation spaces of geometric structures
FRG:合作研究:几何结构的变形空间
  • 批准号:
    1065872
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Hyperbolic geometry, topology and dynamics
双曲几何、拓扑和动力学
  • 批准号:
    1005973
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Focused Research Group: Collaborative Research: Geometry and Deformation Theory of Hyperbolic 3-Manifolds
重点研究组:合作研究:双曲3流形的几何与变形理论
  • 批准号:
    0554321
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

Ginzburg-Landau 型发展方程的拓扑缺陷以及相关问题研究
  • 批准号:
    11071206
  • 批准年份:
    2010
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
拟线性双曲型方程组的理论及数值分析
  • 批准号:
    10371124
  • 批准年份:
    2003
  • 资助金额:
    15.0 万元
  • 项目类别:
    面上项目

相似海外基金

Geodesic arcs and surfaces for hyperbolic knots and 3-manifolds
双曲结和 3 流形的测地线弧和曲面
  • 批准号:
    DP240102350
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Smooth 4-manifolds, hyperbolic 3-manifolds and diffeomorphism groups
光滑 4 流形、双曲 3 流形和微分同胚群
  • 批准号:
    2304841
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Inverse problems for degenerate hyperbolic partial differential equations on manifolds
流形上简并双曲偏微分方程的反问题
  • 批准号:
    22K20340
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
The Geometry of Hyperbolic 3-Manifolds
双曲3流形的几何
  • 批准号:
    2202718
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Hyperbolic Manifolds, Geodesic Submanifolds, and Rigidity for Rank-1 Lattices
双曲流形、测地线子流形和 1 阶晶格的刚度
  • 批准号:
    2300370
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Hyperbolic Manifolds and Their Embedded Submanifolds
双曲流形及其嵌入子流形
  • 批准号:
    2243188
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Minimal Surfaces in Hyperbolic 3-Manifolds
双曲 3 流形中的最小曲面
  • 批准号:
    2202584
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Hyperbolic manifolds from a contact geometry perspective
从接触几何角度看双曲流形
  • 批准号:
    2750796
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Hyperbolic Manifolds and Their Embedded Submanifolds
双曲流形及其嵌入子流形
  • 批准号:
    2203885
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical relativity and asymptotically hyperbolic manifolds
数学相对论和渐近双曲流形
  • 批准号:
    RGPIN-2017-04896
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了