Mathematical Models of Structured Populations in Biology
生物学中结构化群体的数学模型
基本信息
- 批准号:0516737
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-08-01 至 2008-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Principal Investigator studies mathematical models of epidemics structured by individual behavior. The models are applicable to three levels of population epidemiology: (1) in-host pathogenesis of microorganisms, (2) noscocomial (hospital acquired) epidemics, and (3) large-scale epidemics in society. The research is applicable to (1) models of prion replication with individual prion polymers structured by fibril length, (2) models of antibiotic resistance in hospital settings with individual patients structured by age since becoming infected with drug resistant bacterial strains, and (3) models of viral respiratory epidemics with individual infectives structured by age since becoming infected. The models consist of nonlinear differential equations and the methods of research utilize differential equations theory, operator theory, functional analysis, numerical analysis, and computer simulations. The parametric input of the models is based on experimental and epidemiological data in consultation with scientific collaborators. The goals of the research are (1) to evaluate hypothesized mechanisms of prion proliferation in the development of diseases such as bovine spongiform encephalopathy (mad cow disease) and to predict the efficacy of therapeutic intervention, (2) to understand the evolution of multi-drug antibiotic resistant bacterial strains in hospitals and to evaluate hospital policies that prevent or reduce their endemicity, and (3) to analyze the effects of quarantine and isolation measures in epidemics such as the 2003 SARS epidemic and the influenza pandemic of 1918. The significance of the research is its contribution to public health policy in control of epidemic diseases.
主要研究者研究由个人行为构成的流行病数学模型。这些模型适用于三个层次的群体流行病学:(1)微生物的宿主发病机制,(2)医院获得性流行病,以及(3)社会中的大规模流行病。该研究适用于(1)由原纤维长度构成的单个朊病毒聚合物的朊病毒复制模型,(2)医院环境中由感染耐药菌株后的年龄构成的个体患者的抗生素耐药性模型,以及(3)由感染后的年龄构成的个体感染者的病毒呼吸道流行病模型。该模型由非线性微分方程组成,研究方法利用微分方程理论,算子理论,泛函分析,数值分析和计算机模拟。模型的参数输入是根据与科学合作者协商的实验和流行病学数据。本研究的目的是(1)评价朊病毒增殖在牛海绵状脑病等疾病发展中的假设机制(疯牛病)和预测治疗干预的功效,(2)了解医院中耐多药抗生素菌株的演变,并评估预防或减少其流行的医院政策,(3)分析2003年SARS疫情和1918年流感大流行等疫情中检疫隔离措施的效果。本研究的意义在于为控制流行病的公共卫生政策做出贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Glenn Webb其他文献
Understanding unreported cases in the 2019-nCov epidemic outbreak in Wuhan, China, and the importance of major public health interventions
了解中国武汉 2019-nCov 疫情爆发中的未报告病例以及重大公共卫生干预措施的重要性
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Zhihua Liu;Pierre Magal;Ousmane Seydi;Glenn Webb - 通讯作者:
Glenn Webb
The Schrödinger equation and the two-slit experiment of quantum mechanics
- DOI:
10.3934/dcdss.2023001 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Glenn Webb - 通讯作者:
Glenn Webb
Different Modalities of Intercellular Membrane Exchanges Mediate Cell-to-cell P-glycoprotein Transfers in Mcf-7 Breast Cancer Cells * □ S
细胞间膜交换的不同方式介导 Mcf-7 乳腺癌细胞中细胞间 P-糖蛋白转移 * □ S
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
J. Pasquier;Céline;Boulangé;D. Rioult;F. Bultelle;P. Magal;Glenn Webb;F. Foll - 通讯作者:
F. Foll
Bifurcation analysis of critical values for wound closure outcomes in wound healing experiments
伤口愈合实验中伤口闭合结果临界值的分叉分析
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:1.9
- 作者:
Glenn Webb;X. Zhao - 通讯作者:
X. Zhao
The force of cell-cell adhesion in determining the outcome in a nonlocal advection diffusion model of wound healing.
细胞间粘附力决定伤口愈合非局部平流扩散模型的结果。
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Glenn Webb - 通讯作者:
Glenn Webb
Glenn Webb的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Glenn Webb', 18)}}的其他基金
Special Thematic Program on "Mathematical and Quantitative Oncology"
“数学与定量肿瘤学”专题项目
- 批准号:
0752918 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Workshop on Modeling the Rapid Evolution of Infectious Diseases
传染病快速演变建模研讨会
- 批准号:
0518576 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Models of Structured Populations in Biology
生物学中结构化群体的数学模型
- 批准号:
0109148 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Models of Cell Population Dynamics
细胞群动力学的数学模型
- 批准号:
9805515 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Standard Grant
Conference on Mathematical Models in Medical and Health Sciences
医学与健康科学数学模型会议
- 批准号:
9705595 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Mathematical Models of Structured Population Dynamics
数学科学:结构化人口动态的数学模型
- 批准号:
9500631 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Mathematical Models of Cell Population Dynamics
数学科学:细胞群动力学的数学模型
- 批准号:
9202550 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Mathematical Models of Cell Population Dynamics
数学科学:细胞群动力学的数学模型
- 批准号:
9001790 - 财政年份:1990
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Mathematical Models of Cell Population Dynamics
数学科学:细胞群动力学的数学模型
- 批准号:
8722947 - 财政年份:1988
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Mathematical Models of Cell Population Dynamics
数学科学:细胞群动力学的数学模型
- 批准号:
8601529 - 财政年份:1986
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Studies on mathematical models for infectious diseases based on structured population dynamics
基于结构化群体动力学的传染病数学模型研究
- 批准号:
22K03433 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical analysis and epidemiological application of structured epidemic models
结构化流行病模型的数学分析和流行病学应用
- 批准号:
19K14594 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mathematical Theory of Structured Population Models and its Applications to Demography and Epidemiology
结构化人口模型的数学理论及其在人口学和流行病学中的应用
- 批准号:
16K05266 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
A mathematical study on structured ecological models that can be approximated by ODEs
可以用常微分方程近似的结构化生态模型的数学研究
- 批准号:
16K05279 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Methods to Enable Accurate Parameterization of Density-Dependent Structured Population Models
实现密度相关结构化总体模型精确参数化的数学方法
- 批准号:
1514929 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
A mathematical study on structured ecosystem models using Lotka-Volterra equations
使用 Lotka-Volterra 方程对结构化生态系统模型进行数学研究
- 批准号:
23840041 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Researches on mathematical structured population dynamics and its applications to mathematical models for infectious diseases
数学结构种群动态及其在传染病数学模型中的应用研究
- 批准号:
22540114 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical theory of structured population dynamics and its applications to mathematical models for infectious diseases
结构化群体动力学数学理论及其在传染病数学模型中的应用
- 批准号:
19540116 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Models of Structured Populations in Biology
生物学中结构化群体的数学模型
- 批准号:
0109148 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Models of Dynamics and Evolution in Structured Populations
结构化群体动力学和进化的数学模型
- 批准号:
9696219 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Standard Grant