Experimental and theoretical investigations of mono- and bilayer graphene nanoribbon band-to-band tunneling field-effect transistors
单层和双层石墨烯纳米带带间隧道场效应晶体管的实验和理论研究
基本信息
- 批准号:172597456
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2010
- 资助国家:德国
- 起止时间:2009-12-31 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Band-to-band tunnel field-effect transistors (TFETs) have recently attracted a great deal of interest and are considered as one of the most promising routes towards ultra-low power electronic systems. The reason for this is the switching mechanism of TFETs that in contrast to conventional MOSFETs does not rely on the modulation of charge carrier injection by therm emission over a potential barrier but rather employ field-effect controlled band-to-band tunneling in order to switch the device between on and off-state. As a result, TFETs potentially allow being operated at significantly lower supply voltages and exhibit substantially less leakage currents resulting in a strong reduction of dynamic and stand-by power consumption. However, current technology is not yet at that stage and state-of-the-art TFETs exhibit a performance inferior to conventional MOSFETs. The reason for this is that the band-to-band tunneling probability is still not high enough. Two of the most effective performance boosters for TFETs are i) employing a heterostructure with a small band gap at the source channel interface where band-to-band tunneling occurs and a larger band gap anywhere else in the device to suppress leakage currents. ii) An ultrathin channel layer increasing the capacitive coupling if the gate and hence the band-to-band tunneling probability. Graphene represents the ultimate ultrathin channel layer and because the size of the band gap depends on the width of the nanoribbon, lateral varying the width of the nanoribbon allows generating spatially-dependent band gaps and as such to engineer the band gap appropriately to optimize TFET performance. In the current proposal we investigate several different TFETs based on mono- as well as bilayer graphene. Targeted device designs include i) a T-shaped nanoribbon with the stub of the T at the band-to-band tunnel interface to decrease the band gap at this interface and thus increase the device performance, ii) TFETs based on bilayer graphene were vertical electric fields are used to adjust the band gaps in the source channel and drain in an approapriate way and iii) a heterostructure TFET comprising bi- and monolayer graphene. The experimental work is accompanied by device simulations based on quantum mechanical calculations. In order to realize the required n-i-p-doped structure along the direction of current transport we have developed substrates comprising buried tri-gate structures with individually addressable gates. After graphene deposition either by direct exfoliation or bya transfer process graphene will be patterned or fortified with additional top gates to realize working graphene TFETs. Experimental device will be thoroughly characterized with temperature dependent transport measurements and compared with simualtion results.
带间隧道场效应晶体管(TFET)最近引起了人们的极大兴趣,被认为是迈向超低功耗电子系统的最有前途的途径之一。其原因是TFET的开关机制,与传统的MOSFET相比,TFET不依赖于通过势垒上的热发射对电荷载流子注入的调制,而是使用场效应控制的带到带隧道,以便在接通和关断状态之间切换器件。因此,TFET潜在地允许在显著较低的电源电压下运行,并且表现出显著较少的泄漏电流,从而大幅降低动态和待机功耗。然而,目前的技术还没有达到那个阶段,最先进的TFET表现出不如传统MOSFET的性能。其原因是频带间隧道概率仍然不够高。TFET的两个最有效的性能增强器是:i)采用异质结构,在发生带对带隧道传输的源极通道界面处具有较小的带隙,并在器件中的其他任何位置使用较大的带隙来抑制泄漏电流。Ii)超薄沟道层增加了栅极的电容耦合,从而增加了带到带的隧道几率。石墨烯代表最终的超薄沟道层,由于带隙的大小取决于纳米带的宽度,横向改变纳米带的宽度允许产生空间相关的带隙,并因此适当地设计带隙以优化TFET性能。在目前的方案中,我们研究了几种不同的基于单层和双层石墨烯的TFET。有针对性的器件设计包括:i)T形纳米带,在带到带隧道界面处具有T的短端,以减小该界面的带隙,从而提高器件性能;ii)基于双层石墨烯的TFET被用于以适当的方式调节源沟道和漏极中的带隙,以及iii)包括双层和单层石墨烯的异质结构TFET。在实验工作的同时,还进行了基于量子力学计算的器件模拟。为了实现沿电流传输方向所需的n-i-p掺杂结构,我们已经开发了包括具有单独可寻址栅极的掩埋三栅极结构的衬底。石墨烯沉积后,通过直接剥离或转移工艺,石墨烯将被图案化或用额外的顶栅加固,以实现工作的石墨烯TFET。实验装置将用随温度变化的输运测量进行全面的表征,并与模拟结果进行比较。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Buried triple-gate structures for advanced field-effect transistor devices
用于先进场效应晶体管器件的埋置三栅结构
- DOI:10.1016/j.mee.2014.02.001
- 发表时间:2014
- 期刊:
- 影响因子:2.3
- 作者:M.R. Müller;A. Gumprich;F. Schütte;K. Kallis;U. Künzelmann;S. Engels;C. Stampfer;N. Wilck;J. Knoch
- 通讯作者:J. Knoch
Visibility of two-dimensional layered materials on various substrates
- DOI:10.1063/1.4930574
- 发表时间:2015-10-14
- 期刊:
- 影响因子:3.2
- 作者:Mueller, M. R.;Gumprich, A.;Knoch, J.
- 通讯作者:Knoch, J.
Optimizing the identification of mono- and bilayer graphene on multilayer substrates.
优化多层基材上单层和双层石墨烯的识别
- DOI:10.1364/ao.51.000385
- 发表时间:2012
- 期刊:
- 影响因子:1.9
- 作者:C. Kontis;M.R. Müller;C. Küchenmeister;K.T. Kallis;J. Knoch
- 通讯作者:J. Knoch
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Joachim Knoch其他文献
Professor Dr. Joachim Knoch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Joachim Knoch', 18)}}的其他基金
High yield, low variability – Employing silicon CMOS technology for the realization of spin qubits
高产量、低变异性 – 采用硅 CMOS 技术实现自旋量子位
- 批准号:
421769186 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Coupling of quantum dots with superconductors- towards long-range coupling of qubits
量子点与超导体的耦合——实现量子位的长程耦合
- 批准号:
387743155 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
1-D Multi-Gate FETs: Tailoring the Potential Landscape on the Nanoscale
一维多栅极 FET:定制纳米尺度的潜在前景
- 批准号:
266030637 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Strained Graphene Field-Effect Transistor - Nano-electro-mechanical transistors for low power applications and locally adjustable electronic properties
应变石墨烯场效应晶体管 - 用于低功率应用和局部可调电子特性的纳米机电晶体管
- 批准号:
242588083 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Priority Programmes
Elektrostatisch dotierte, laterale Source/Drain Kontakte in Nanodraht Tunnel Feld-Effekt Transistoren
纳米线隧道场效应晶体管中的静电掺杂横向源极/漏极接触
- 批准号:
183625203 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
Entwicklung einer Technologie für die Herstellung eines High-Electron-Mobility Transistors
开发高电子迁移率晶体管的制造技术
- 批准号:
5338108 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Research Fellowships
Cryogenic Complementary Metal-Oxide-Semiconductor Technology for the Realization of Classical QuBit-Control Circuits
用于实现经典量子位控制电路的低温互补金属氧化物半导体技术
- 批准号:
422581876 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
CAS: Fundamental Experimental-Theoretical Investigations of New Metal Alloy Nanocatalysts for Natural Gas Repurposing
CAS:用于天然气再利用的新型金属合金纳米催化剂的基础实验理论研究
- 批准号:
2109120 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Experimental and Theoretical Investigations of Organic Reaction Rates and Mechanisms
有机反应速率和机理的实验和理论研究
- 批准号:
2153972 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Theoretical and Experimental Investigations of Photoheterolysis Reactions
光异解反应的理论与实验研究
- 批准号:
2055335 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Experimental and theoretical investigations of transport processes in polymer electrolyte fuel cells
聚合物电解质燃料电池传输过程的实验和理论研究
- 批准号:
RGPIN-2016-04108 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Experimental and Theoretical Investigations on Structural Performance of TL-5 Fiber-Reinforced Concrete Bridge Barrier
TL-5纤维混凝土桥梁护栏结构性能的实验与理论研究
- 批准号:
552796-2020 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Experimental and theoretical investigations of transport processes in polymer electrolyte fuel cells
聚合物电解质燃料电池传输过程的实验和理论研究
- 批准号:
RGPIN-2016-04108 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Theoretical and experimental investigations into chemical kinetics models for supercritical CO2 oxidation
超临界二氧化碳氧化化学动力学模型的理论和实验研究
- 批准号:
2293668 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Studentship
MoST-DFG Collaboration - Theoretical, numerical and experimental investigations of gravity-driven fluid-granular mixture flows
MoST-DFG 合作 - 重力驱动的流体-颗粒混合物流动的理论、数值和实验研究
- 批准号:
425259073 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Experimental and theoretical investigations of transport processes in polymer electrolyte fuel cells
聚合物电解质燃料电池传输过程的实验和理论研究
- 批准号:
RGPIN-2016-04108 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Experimental and theoretical investigations of the maximum heat transfer rate in liquid-vapour evaporative cooling syste
液-汽蒸发冷却系统最大传热率的实验和理论研究
- 批准号:
2299752 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Studentship