1-D Multi-Gate FETs: Tailoring the Potential Landscape on the Nanoscale

一维多栅极 FET:定制纳米尺度的潜在前景

基本信息

项目摘要

One-dimensional (1-D) materials such as nanowires and nanotubes have attracted a great deal of attention recently as buildings blocks of future nanoelectronics systems. This interest is in part due to the small geometry that allows realizing optimum scalability of the devices due to the strong electrostatic gate control in e.g. wrap-gate device structures. In addition, nanowires/tubes enable one-dimensional electronic transport that has a number of benefits such as a rather long mean free path for scattering or the highly linear transfer characteristics. Furthermore, the combination of 1-D transport and excellent gate control enables a tight control over the potential distribution within the device. While it is common practice to use gates in order to manipulate the potential profile of transistor device based on novel materials so far only a small number of gates has been used and these gates exhibit a length on the order of several tens to hundreds of nanometers and/or are placed far apart from each other prohibiting a manipulation of the potential profile on the nanoscale. The aim of the present proposal is to realize a 1-D multi-gate device architecture where a large number of gates (on the order of 10 and more) with lengths in the few nanometer range will be placed next to each other with a few nanometers inter-gate distances. This device layout allows tailoring the conduction/valence band profile along the device on the nanoscale due to the excellent gate control in 1-D nanostructures; hence this band tailoring allows studying the full potential of 1-D structures for nanoelectronics. Two different demonstrations will be pursued within the project: First, a gate-induced superlattice structure will be realized in e.g. carbon nanotubes and/or InAs nanowires. With appropriate dimensions this superlattice will serve as an energy filter enabling a so-called steep slope transistor that operates at very low supply voltages and hence facilitates ultra-low power nanoelectronics systems. Second, we will adjust the band profile along the channel in order to maximize the linearity of the transfer characteristics of the 1-D device.
近年来,纳米线和纳米管等一维材料作为未来纳米电子系统的构建块引起了人们极大的关注。这种兴趣部分归因于小的几何结构,由于在例如缠绕栅极器件结构中的强大的静电栅极控制,其允许实现器件的最佳可伸缩性。此外,纳米线/管实现了一维电子传输,其具有许多优点,例如用于散射的相当长的平均自由程或高度线性的传输特性。此外,1-D传输和出色的栅极控制相结合,能够严格控制器件内的潜在分布。虽然使用栅极来操纵基于新材料的晶体管器件的电位分布是常见的做法,但到目前为止只使用了少量的栅极,并且这些栅极呈现出几十到数百纳米量级的长度和/或彼此相距很远,从而禁止在纳米尺度上操纵电位分布。本方案的目的是实现一维多栅极器件体系结构,其中大量长度在几纳米范围内的栅极(大约10个数量级或更多)将以几纳米的栅间距离彼此相邻放置。由于一维纳米结构出色的栅极控制,这种器件布局允许在纳米尺度上沿着器件定制导带/价带分布;因此,这种能带定制允许研究一维结构在纳米电子学中的全部潜力。该项目将进行两个不同的演示:第一,将在例如碳纳米管和/或InAs纳米线中实现栅感应超晶格结构。在适当的尺寸下,这种超晶格将充当能量过滤器,使所谓的陡坡晶体管能够在非常低的电源电压下运行,从而促进超低功率纳米电子系统的发展。其次,我们将沿通道调整频带分布,以最大化一维器件传输特性的线性度。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Alternatives for Doping in Nanoscale Field‐Effect Transistors
  • DOI:
    10.1002/pssa.201700969
  • 发表时间:
    2018-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Felix Riederer;T. Grap;Sergej Fischer;M. Mueller;Daichi Yamaoka;Bin Sun;Charu Gupta;K. Kallis;J. Knoch
  • 通讯作者:
    Felix Riederer;T. Grap;Sergej Fischer;M. Mueller;Daichi Yamaoka;Bin Sun;Charu Gupta;K. Kallis;J. Knoch
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Joachim Knoch其他文献

Professor Dr. Joachim Knoch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Joachim Knoch', 18)}}的其他基金

High yield, low variability – Employing silicon CMOS technology for the realization of spin qubits
高产量、低变异性 – 采用硅 CMOS 技术实现自旋量子位
  • 批准号:
    421769186
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Reconfigurable Field-Effect-Transistors
可重构场效应晶体管
  • 批准号:
    397662129
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Coupling of quantum dots with superconductors- towards long-range coupling of qubits
量子点与超导体的耦合——实现量子位的长程耦合
  • 批准号:
    387743155
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Strained Graphene Field-Effect Transistor - Nano-electro-mechanical transistors for low power applications and locally adjustable electronic properties
应变石墨烯场效应晶体管 - 用于低功率应用和局部可调电子特性的纳米机电晶体管
  • 批准号:
    242588083
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Elektrostatisch dotierte, laterale Source/Drain Kontakte in Nanodraht Tunnel Feld-Effekt Transistoren
纳米线隧道场效应晶体管中的静电掺杂横向源极/漏极接触
  • 批准号:
    183625203
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Experimental and theoretical investigations of mono- and bilayer graphene nanoribbon band-to-band tunneling field-effect transistors
单层和双层石墨烯纳米带带间隧道场效应晶体管的实验和理论研究
  • 批准号:
    172597456
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Entwicklung einer Technologie für die Herstellung eines High-Electron-Mobility Transistors
开发高电子迁移率晶体管的制造技术
  • 批准号:
    5338108
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
Cryogenic Complementary Metal-Oxide-Semiconductor Technology for the Realization of Classical QuBit-Control Circuits
用于实现经典量子位控制电路的低温互补金属氧化物半导体技术
  • 批准号:
    422581876
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

面向无人机应用的增强型p-gate AlGaN/GaN HEMT高功率微波辐射效应及 机理研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
二次外延势垒层的新型p-gate GaN HEMT器件栅极可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
直接带隙In2Se3、GaTe纳米片/MoS2复合薄膜的制备及饱和吸收性能的研究
  • 批准号:
    2020A151501861
  • 批准年份:
    2020
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
二次外延AlGaN势垒层的增强型p-gate GaN HEMT新结构研究
  • 批准号:
    61904207
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
痛(感)觉传递新“gate”——DRG对外周痛觉信号传递的调控及对疼痛行为的影响
  • 批准号:
    81870872
  • 批准年份:
    2018
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目
基于硅基一维纳米线的Gate-all-around纳米晶体管的研究
  • 批准号:
    61176101
  • 批准年份:
    2011
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Toward Smart Surface Acoustic Wave Devices with Gate-Tunability
职业:开发具有栅极可调谐性的智能表面声波器件
  • 批准号:
    2337069
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Eradicate the Gate: Empowering Learners and Equalizing Assessment in K12 Engineering Education
职业:消除大门:K12 工程教育中的学习者赋权和均衡评估
  • 批准号:
    2339619
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Dual Series Gate Configuration, Materials Design, and Mechanistic Modeling for Drift-Stabilized, Highly Sensitive Organic Electrochemical Transistor Biosensors
用于漂移稳定、高灵敏度有机电化学晶体管生物传感器的双串联栅极配置、材料设计和机械建模
  • 批准号:
    2402407
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Deterministic quantum gate between photons in a next-generation light-matter interface
下一代光-物质界面中光子之间的确定性量子门
  • 批准号:
    EP/W035839/2
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
NSF-NSERC: Building a two-qubit controlled phase gate using laterally coupled semiconductor quantum dots
NSF-NSERC:使用横向耦合半导体量子点构建两个量子位控制的相位门
  • 批准号:
    2317047
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of pH responsive polymer and inorganic porous support composite gate membrane
pH响应聚合物与无机多孔支撑复合闸膜的研制
  • 批准号:
    23K04468
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Could GATE-16 help unlock the gate to treatment response in pancreatic ductal adenocarcinoma?
GATE-16 能否帮助打开胰腺导管腺癌治疗反应的大门?
  • 批准号:
    495197
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of fast self regulating digital active gate driver for SiC MOSFET
SiC MOSFET 快速自调节数字有源栅极驱动器的开发
  • 批准号:
    23H01399
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Deterministic quantum gate between photons in a next-generation light-matter interface
下一代光-物质界面中光子之间的确定性量子门
  • 批准号:
    EP/W035839/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Development of Digital Active Gate Drive System for SiC MOSFETs toward Integration of Power Conversion Circuits
面向功率转换电路集成化的 SiC MOSFET 数字有源栅极驱动系统的开发
  • 批准号:
    22KJ1702
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了