Strained Graphene Field-Effect Transistor - Nano-electro-mechanical transistors for low power applications and locally adjustable electronic properties

应变石墨烯场效应晶体管 - 用于低功率应用和局部可调电子特性的纳米机电晶体管

基本信息

项目摘要

For future energy autonomous systems a novel class of switches is needed that provide almost zero stand-by power consumption and that can be operated at very small voltages. In this respect, nano-electro-mechanical systems (NEMS) have attracted a renewed interest: nanoscale relays based on the deflection of nanoscale beams using an electric field are currently being considered as candidates for ultra-low power switches since they exhibit an extremely low off-state leakage and abrupt turn-on characteristics. However, since in NEMS switches a solid beam is forced into mechanical contact with the drain electrode, they are prone to serious reliability issues including beam stiction and contact degradation. Moreover, NEMS switches to-date require very large voltages to provide sufficient electrostatic attraction and exhibit large hysteresis effects. In an alternative NEMS device concept - the suspended gate FET - the beam is capacitively coupled and thus many of the issues related to NEMS relays are avoided. However, the suspended gate FET also exhibits a large hysteresis and substantial gate voltages are required, too. In the current proposal we will fabricate and investigate nano-electro-mechanical switches that combine CMOS reliability, CMOS on-state currents with significantly lower off-state leakage currents compared to conventional CMOS, exploiting the piezo-electric properties of graphene nanoribbons. Field-effect induced actuation and the field-effect itself act on the conduction and valence bands of a graphene nanoribbon employing a moving and a fixed gate electrode resulting in an energetic movement of the conduction/valence bands as in a conventional FET and a modification of the band gap at the same time. As a result, such a device - called nano-electro-mechanical strained graphene FET (NEMSGFET) in the following offers superior switching behavior. Due to the combination of a suspended mechanical gate and a fixed electrostatic gate, in the NEMSGFET (in contrast to the suspended gate FET) the mechanical gate can adjust a certain strain state while the electrostatic gate is used for transistor functionality. This can be used e.g. for analog applications or, if a permanent strain state is achieved due to stiction of the moving gate, several different band gaps can be realized in close proximity on the same chip for e.g. multi-valued logic or in for the realization of nanoscale spectrometers.
对于未来的能源自主系统,需要一种新型的开关,提供几乎为零的待机功耗,并可以在非常小的电压下工作。在这方面,纳米机电系统(NEMS)已经吸引了新的兴趣:纳米继电器的基础上使用电场的纳米级光束偏转目前被认为是超低功率开关的候选人,因为它们表现出极低的关断状态泄漏和突然导通特性。然而,由于在NEMS开关中,实心梁被迫与漏电极机械接触,因此它们易于出现严重的可靠性问题,包括梁静摩擦和接触退化。此外,迄今为止的NEMS开关需要非常大的电压来提供足够的静电吸引力并表现出大的滞后效应。在另一种NEMS器件概念中-悬栅FET -梁是电容耦合的,因此避免了与NEMS继电器相关的许多问题。然而,悬置栅极FET也表现出大的滞后,并且也需要相当大的栅极电压。在目前的建议中,我们将制造和研究纳米机电开关,结合联合收割机CMOS的可靠性,CMOS的导通状态电流与显着较低的关断状态泄漏电流相比,传统的CMOS,利用石墨烯纳米带的压电性能。场效应诱导的致动和场效应本身作用于采用移动和固定栅电极的石墨烯纳米晶体管的导带和价带,从而导致如常规FET中的导带/价带的高能移动,同时导致带隙的改变。因此,这种器件-在下文中称为纳米机电应变石墨烯FET(NEMSGFET)-提供了上级开关行为。由于悬置机械栅极和固定静电栅极的组合,在NEMSGFET中(与悬置栅极FET相反),机械栅极可以调节特定应变状态,而静电栅极用于晶体管功能。这可以用于例如模拟应用,或者如果由于移动栅极的静摩擦而实现永久应变状态,则可以在同一芯片上紧密接近地实现几个不同的带隙,用于例如多值逻辑或用于实现纳米级光谱仪。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Joachim Knoch其他文献

Professor Dr. Joachim Knoch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Joachim Knoch', 18)}}的其他基金

High yield, low variability – Employing silicon CMOS technology for the realization of spin qubits
高产量、低变异性 – 采用硅 CMOS 技术实现自旋量子位
  • 批准号:
    421769186
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Reconfigurable Field-Effect-Transistors
可重构场效应晶体管
  • 批准号:
    397662129
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Coupling of quantum dots with superconductors- towards long-range coupling of qubits
量子点与超导体的耦合——实现量子位的长程耦合
  • 批准号:
    387743155
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
1-D Multi-Gate FETs: Tailoring the Potential Landscape on the Nanoscale
一维多栅极 FET:定制纳米尺度的潜在前景
  • 批准号:
    266030637
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Elektrostatisch dotierte, laterale Source/Drain Kontakte in Nanodraht Tunnel Feld-Effekt Transistoren
纳米线隧道场效应晶体管中的静电掺杂横向源极/漏极接触
  • 批准号:
    183625203
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Experimental and theoretical investigations of mono- and bilayer graphene nanoribbon band-to-band tunneling field-effect transistors
单层和双层石墨烯纳米带带间隧道场效应晶体管的实验和理论研究
  • 批准号:
    172597456
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Entwicklung einer Technologie für die Herstellung eines High-Electron-Mobility Transistors
开发高电子迁移率晶体管的制造技术
  • 批准号:
    5338108
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
Cryogenic Complementary Metal-Oxide-Semiconductor Technology for the Realization of Classical QuBit-Control Circuits
用于实现经典量子位控制电路的低温互补金属氧化物半导体技术
  • 批准号:
    422581876
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

基于MXene-Graphene异构界面相互作用的太赫兹超宽带调制机理研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
MoS2-graphene二维亚纳米通道膜构筑及溶剂传质与筛分机制研究
  • 批准号:
    22378132
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于MXene-Graphene异构界面相互作用的太赫兹超宽带调制机理研究
  • 批准号:
    62375044
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
转角In2Se3/Graphene异质结的界面调控及电子性质研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
g-C3N4/Graphene二维异质结光电阴极保护材料的构筑及应变调控光电效率研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
ZnO/Graphene复合量子点的表面特性调控、吸附作用及抗菌性能增强机制
  • 批准号:
    51802185
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
三维多孔KCu7S4@C/graphene复合材料的可控制备及其储能性质的研究
  • 批准号:
    21805247
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
超细晶graphene/Cu材料累积叠轧过程中组织演变机制和强化机制
  • 批准号:
    51701174
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
三维多孔SnS@C/graphene复合材料可控制备与储钠性能研究
  • 批准号:
    51604122
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of lightning forecast technology by using high-performance graphene electric-field sensors with single-V/m-level sensitivity
单V/m级灵敏度高性能石墨烯电场传感器开发闪电预报技术
  • 批准号:
    23H00256
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
EAGER: PAN-VARIANT COVID-19 DIFFERENTIATED BIOSENSING USING GRAPHENE FIELD-EFFECT SENSORS
EAGER:使用石墨烯场效应传感器进行泛变体 COVID-19 差异化生物传感
  • 批准号:
    2222907
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Band gap formation in graphene by strain-induced gauge field
应变诱导规范场在石墨烯中形成带隙
  • 批准号:
    21K14493
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Large-scale Modular Simulations of Graphene-hBN Based on the Phase Field Crystal Model
基于相场晶体模型的石墨烯-六方氮化硼大规模模块化模拟
  • 批准号:
    553841-2020
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
RAPID: Dual COVID-19 and Influenza Virus Detection via Target Antibody-Functionalized Graphene Field-Effect Sensing
RAPID:通过目标抗体功能化石墨烯场效应传感进行双重 COVID-19 和流感病毒检测
  • 批准号:
    2033846
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Graphene/boron nitride heterostructures: resonant tunnelling at low temperatures and high magnetic field
石墨烯/氮化硼异质结构:低温高磁场下的谐振隧道
  • 批准号:
    2276086
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Studentship
Graphene/Hydrogel Hybrid Field-Effect Transistors for Seamless Bioelectronic Interfacing
用于无缝生物电子接口的石墨烯/水凝胶混合场效应晶体管
  • 批准号:
    1803907
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Single-nanometer-scale graphene tunnel field effect transistors for ultra-low-power nano electronics
用于超低功耗纳米电子器件的单纳米级石墨烯隧道场效应晶体管
  • 批准号:
    18F18365
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
High-Field Skyrmions in Graphene
石墨烯中的高场斯格明子
  • 批准号:
    391044850
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Characterization of electronic structure of strained graphene by using strain field STM
利用应变场 STM 表征应变石墨烯的电子结构
  • 批准号:
    17K04985
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了