Cryogenic Complementary Metal-Oxide-Semiconductor Technology for the Realization of Classical QuBit-Control Circuits

用于实现经典量子位控制电路的低温互补金属氧化物半导体技术

基本信息

项目摘要

Quantum information technology holds promise to unleash enormous computational power to solve problems that are intractable on today's classical computers. However, the realization of a useful quantum information processor (QIP) will involve a large number of coupled qubits. The reason for this is that each logic qubit consists of a large number of physical qubit implementations in order to establish an appropriate error correction utilizing e.g. surface codes. Each of the physical qubits requires a control unit that provides readout, gate pulses and bias parameters. One major challenge is that the most promising approaches for the realization of solid-state qubits are operated at cryogenic temperatures, which limits the available cooling power per qubit to very low values in the micro- to nanowatt regime. Typical experiments are controlled by external circuits located at room temperature, or at least at a temperature higher than that of the qubit. Extending this approach to the required number of qubits appears completely unpractical because of interconnectivity and size considerations. An integrated approach with microfabricated classical and quantum hardware in close proximity is thus very attractive. However, integrating classical control electronics close to the actual qubit chip requires the control electronics to be operated at a temperature of ~1K (while performing similar to state-of-the-art CMOS circuits) at an ultra-low power level. As a result of the limited cooling power, cryogenic CMOS circuits have to be operated at very low supply voltage in the tens of mV regime. This implies that extremely steep inverse subthreshold slopes, a very tight control of the threshold voltage as well as very low variability are required which is impossible to be achieved by simply cooling down the existing technology, optimized for room-temperature operation. The present proposal is a continuation of a project that has been targeting the exploration and development of a dedicated, cryogenic CMOS (cCMOS) technology and the fabrication and characterization of field-effect transistors based on this cCMOS technology. Within the preceding project we were able to show two promising ways to obtain steep slope cryogenic FETs and studied ways how to avoid dopants in such devices. Here, we aim at further developing the approaches and combining them in order to realize cCMOS steep slope devices.
量子信息技术有望释放出巨大的计算能力,以解决当今经典计算机上难以解决的问题。然而,一个有用的量子信息处理器(QIP)的实现将涉及到大量的耦合量子比特。其原因是,每个逻辑量子比特由大量物理量子比特实现组成,以便利用例如表面代码建立适当的纠错。每个物理量子比特需要一个控制单元,该控制单元提供读出、选通脉冲和偏置参数。一个主要的挑战是,最有希望实现固态量子比特的方法是在低温下操作的,这将每量子比特的可用冷却功率限制在微纳瓦范围内的非常低的值。典型的实验是由位于室温或至少高于量子比特温度的外部电路控制的。由于互连和大小的考虑,将这种方法扩展到所需数量的量子比特似乎完全不切实际。因此,将微细制造的经典硬件和量子硬件紧密结合在一起的方法非常有吸引力。然而,集成接近实际量子比特芯片的经典控制电子设备要求控制电子设备以超低功率水平在~1K的温度下运行(同时执行类似于最先进的cmos电路)。由于冷却功率有限,低温电路必须在几十mV的极低电源电压下工作。这意味着需要非常陡峭的反向亚阈值斜率、非常严格的阈值电压控制以及非常低的变化性,这不可能通过简单地冷却现有技术来实现,该技术针对室温操作进行了优化。本提案是一个项目的继续,该项目一直致力于探索和开发一种专用的低温CMOS(CCMOS)技术,以及基于这种cCMOS技术的场效应晶体管的制造和表征。在前面的项目中,我们展示了获得陡坡低温场效应管的两种有希望的方法,并研究了如何避免在这种器件中使用杂质。在这里,我们的目标是进一步发展这些方法,并将它们结合起来,以实现cCMOS陡斜率器件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Joachim Knoch其他文献

Professor Dr. Joachim Knoch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Joachim Knoch', 18)}}的其他基金

High yield, low variability – Employing silicon CMOS technology for the realization of spin qubits
高产量、低变异性 – 采用硅 CMOS 技术实现自旋量子位
  • 批准号:
    421769186
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Reconfigurable Field-Effect-Transistors
可重构场效应晶体管
  • 批准号:
    397662129
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Coupling of quantum dots with superconductors- towards long-range coupling of qubits
量子点与超导体的耦合——实现量子位的长程耦合
  • 批准号:
    387743155
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
1-D Multi-Gate FETs: Tailoring the Potential Landscape on the Nanoscale
一维多栅极 FET:定制纳米尺度的潜在前景
  • 批准号:
    266030637
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Strained Graphene Field-Effect Transistor - Nano-electro-mechanical transistors for low power applications and locally adjustable electronic properties
应变石墨烯场效应晶体管 - 用于低功率应用和局部可调电子特性的纳米机电晶体管
  • 批准号:
    242588083
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Elektrostatisch dotierte, laterale Source/Drain Kontakte in Nanodraht Tunnel Feld-Effekt Transistoren
纳米线隧道场效应晶体管中的静电掺杂横向源极/漏极接触
  • 批准号:
    183625203
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Experimental and theoretical investigations of mono- and bilayer graphene nanoribbon band-to-band tunneling field-effect transistors
单层和双层石墨烯纳米带带间隧道场效应晶体管的实验和理论研究
  • 批准号:
    172597456
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Entwicklung einer Technologie für die Herstellung eines High-Electron-Mobility Transistors
开发高电子迁移率晶体管的制造技术
  • 批准号:
    5338108
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships

相似海外基金

STTR Phase II: Complementary metal oxide semiconductor (CMOS) integrated piezoelectric vapor sensors
STTR 第二阶段:互补金属氧化物半导体 (CMOS) 集成压电蒸汽传感器
  • 批准号:
    2126910
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
SBIR Phase I: A Complementary Metal-Oxide Semiconductor (CMOS) Compatible Single Photon Avalanche Diode
SBIR 第一阶段:互补金属氧化物半导体 (CMOS) 兼容单光子雪崩二极管
  • 批准号:
    2136226
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Characterization of radiation-hard, 130nm, complementary metal-oxide-semiconductor, application specific integrated circuits for the ATLAS inner tracker strip tracking detector readout electronics
用于 ATLAS 内部跟踪器带状跟踪检测器读出电子器件的抗辐射、130nm、互补金属氧化物半导体、专用集成电路的表征
  • 批准号:
    553390-2020
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
I-Corps: A Technology for Complementary Metal-Oxide Semiconductors (CMOS)-Integrated Vapor Sensors
I-Corps:互补金属氧化物半导体 (CMOS) 集成蒸汽传感器技术
  • 批准号:
    2011426
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Dual-mode ligand release from transition metal complexes: Towards photoselectivity by complementary synthetic and ultrafast UV-VIS-MIR spectroscopic approaches
过渡金属配合物的双模式配体释放:通过互补合成和超快 UV-VIS-MIR 光谱方法实现光选择性
  • 批准号:
    404315670
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
COSMOS (COmplementary Semiconductor using thin-film Metal-Oxide Systems)
COSMOS(使用薄膜金属氧化物系统的互补半导体)
  • 批准号:
    132201
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Feasibility Studies
Trichromatic Complementary Metal-Oxide-Semiconductor Subretinal Implant
三色互补金属氧化物半导体视网膜下植入物
  • 批准号:
    496296-2016
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Electrically Pumped complementary-metal-oxide-semiconductor (CMOS)-compatible two-dimensional transition metal dichalcogenide materials nanolasers
电泵浦互补金属氧化物半导体(CMOS)兼容的二维过渡金属二硫属化物材料纳米激光器
  • 批准号:
    1508856
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Breaking the glass ceiling: silicon-nitride (SiN) and doped silica glass for ultra high speed Complementary metal-oxide-semiconductor (CMOS) compatible optical processing and measurement chips
打破玻璃天花板:用于超高速的氮化硅 (SiN) 和掺杂石英玻璃 兼容互补金属氧化物半导体 (CMOS) 的光学处理和测量芯片
  • 批准号:
    DP110100003
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Complementary metal–oxide–semiconductor (CMOS) -compatible ultra-high response piezoelectric thin films for efficient energy harvesting
互补金属氧化物半导体 (CMOS) 兼容的超高响应压电薄膜,用于高效能量收集
  • 批准号:
    DP1092717
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了