Volume and Geometric Structures on 3-Manifolds

三流形上的体积和几何结构

基本信息

  • 批准号:
    0604352
  • 负责人:
  • 金额:
    $ 8.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-08-01 至 2009-07-31
  • 项目状态:
    已结题

项目摘要

Finding constant curvature metrics on 3-manifolds has been one of the central problems in low-dimensional topology ever since the geometrization conjecture was proposed. The main focus of the project is to construct constant curvature metrics on triangulated closed 3-manifolds using a variational approach where the energy functional is the volume. Starting with a triangulation of a closed 3-manifold, the PI introduces the concept of angle structures on 3-simplexes and on triangulations. These are generalizations of the concepts introduced by Casson and Rivin for compact 3-manifold with non-empty tori boundary. An angle structure on a tetrahedron is an assignment of a dihedral angle to each edge of the tetrahedron so that each vertex triangle becomes a spherical triangle. For instance all spherical, Euclidean and hyperbolic tetrahedra are angle structures. An angle structure on a triangulated closed 3-manifold is a realization of each 3-simplex by an angle structure so that the sum of dihedral angles at each edge is 360-degree. The space of all angle structures on a fixed triangulated manifold is an open bounded convex polytope. The PI has shown that there is a natural notion of volume of angle structures which generalizes the notion of volume of tetrahedra in hyperbolic and spherical. The main focus of the project is on the local maximum point of the volume. The PI has established that the volume can be extended continuously to the compact closure of the space of all angle structures. This, in particular, established a conjecture of John Milnor on the volume of simplexes in classical geometry. It has also been shown that if the volume has a local maximum point in the space of all angle structures, then either the manifold has a constant curvature metric, or the manifold contains a very special 2-sphere or real projective plane. The main focus of the project is to study the maximum point of the volume at the boundary of the space of all angle structures.The physical universe is 3-dimensional. In mathematics, 3-dimensional spaces are called 3-manifolds. The study of 3-manifolds is one of the most important problems in geometry and topology. Understanding geometric shapes of the 3-dimensional spaces is of vital importance theoretically and practically. In 1978, William Thurston made a revolutionary conjecture which lists the best geometry structure a 3-dimensional space can have, i.e., he conjectured the best shape a 3-dimensional space can take. He also verified the conjecture for a vast class of 3-dimensional spaces. Recent work of R. Hamilton and G. Perelman may have solved conjecture. However, for a 3-dimensional space, how to find algorithmically the best shape of a 3-dimensional space is still open. The goal of this proposal is to construct the algorithm. The PI has already made progresses in this direction. The successful completion of the proposal will have applications not only in mathematics, but also in computer graphics and computational general relativity.
自几何化猜想提出以来,寻找三维流形上的常曲率度量一直是低维拓扑学的核心问题之一。该项目的主要重点是使用变分方法在三角化封闭3-流形上构建恒定曲率度量,其中能量泛函是体积。从封闭3流形的三角剖分开始,PI引入了3-简单体和三角剖分上的角结构的概念。这是Casson和Rivin对具有非空环面边界的紧致3流形概念的推广。四面体上的角结构是在四面体的每个边上分配一个二面角,使每个顶点三角形成为一个球面三角形。例如,所有球面、欧几里得和双曲四面体都是角结构。三角化封闭3-流形上的角结构是用一个角结构来实现每个3-单纯形,使每条边的二面角之和为360度。固定三角形流形上所有角结构的空间是一个开有界凸多面体。PI证明了角结构有一个自然的体积概念,它将四面体的体积概念推广到双曲和球面。项目的主要焦点是体量的局部最大值点。PI已经确定了体积可以连续扩展到所有角度结构空间的紧凑闭合。特别是,这建立了约翰·米尔诺关于经典几何中单纯形体积的猜想。如果体积在所有角度结构的空间中有一个局部极大点,则流形要么有一个常曲率度量,要么包含一个非常特殊的2球或实投影平面。项目的主要重点是研究所有角度结构空间边界处的体积最大值点。物质世界是三维的。在数学中,三维空间被称为三维流形。三维流形的研究是几何和拓扑学中最重要的问题之一。了解三维空间的几何形状在理论和实践上都具有重要意义。1978年,威廉·瑟斯顿(William Thurston)提出了一个革命性的猜想,该猜想列出了三维空间可以具有的最佳几何结构,即他推测了三维空间可以具有的最佳形状。他还在一个巨大的三维空间中验证了这个猜想。R. Hamilton和G. Perelman最近的工作可能已经解决了猜想。然而,对于三维空间,如何从算法上找到三维空间的最佳形状仍然是一个开放的问题。本提案的目标是构建该算法。PI已经在这个方向上取得了进展。该提案的成功完成将不仅应用于数学,而且应用于计算机图形学和计算广义相对论。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Feng Luo其他文献

Function and potential application of quorum sensing in nitrogen-removing functional bacteria: a review
群体感应在脱氮功能细菌中的功能和潜在应用:综述
  • DOI:
    10.5004/dwt.2021.27373
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Feng Luo;Huizhi Hu;Yirong Liu
  • 通讯作者:
    Yirong Liu
Diagnosis prevention and treatment for PICC‐related upper extremity deep vein thrombosis in breast cancer patients
乳腺癌患者PICC相关上肢深静脉血栓的诊治
  • DOI:
    10.1111/j.1743-7563.2011.01508.x
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Xing;Vishnu Prasad Adhikari;Hong Liu;Ling;Sheng;Hong Yuan Li;G. Ren;Feng Luo;Kai
  • 通讯作者:
    Kai
Degradation of sulfonamides and formation of trihalomethanes by chlorination after pre-oxidation with Fe(VI)
Fe(VI) 预氧化后氯化降解磺酰胺并形成三卤甲烷
  • DOI:
    10.1016/j.jes.2018.01.016
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    Tuqiao Zhang;Feilong Dong;Feng Luo;Cong Li
  • 通讯作者:
    Cong Li
Abnormal elastic behaviour of poly(2-ureidoethyl methacrylate) physical hydrogels
聚(2-脲基乙基甲基丙烯酸酯)物理水凝胶的异常弹性行为
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Taolin Sun;Takayuki Nonoyama;Yoshiyuki Saruwatari;Feng Luo;Takayuki Kurokawa;Tasuku Nakajima;Abu Bin Ihsan;Jian Ping Gong
  • 通讯作者:
    Jian Ping Gong
Synthesis and characterization of PLGA-PEG-PLGA based thermosensitive polyurethane micelles for potential drug delivery
用于潜在药物输送的基于 PLGA-PEG-PLGA 的热敏聚氨酯胶束的合成和表征
  • DOI:
    10.1080/09205063.2020.1854413
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Min Wang;Jianghao Zhan;Laijun Xu;Yanjun Wang;Dan Lu;Zhen Li;Jiyao Li;Feng Luo;Hong Tan
  • 通讯作者:
    Hong Tan

Feng Luo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Feng Luo', 18)}}的其他基金

ATD: Algorithms and Geometric Methods for Community and Anomaly Detection and Robust Learning in Complex Networks
ATD:复杂网络中社区和异常检测以及鲁棒学习的算法和几何方法
  • 批准号:
    2220271
  • 财政年份:
    2023
  • 资助金额:
    $ 8.19万
  • 项目类别:
    Standard Grant
Travel: NSF Student Travel Grant for 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
旅费:2021 年 IEEE 国际生物信息学和生物医学会议 (BIBM) 的 NSF 学生旅费补助金
  • 批准号:
    2131662
  • 财政年份:
    2021
  • 资助金额:
    $ 8.19万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Cyberinstrument for AI-Enabled Computational Science & Engineering
MRI:购买用于人工智能计算科学的网络仪器
  • 批准号:
    2018069
  • 财政年份:
    2020
  • 资助金额:
    $ 8.19万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Geometric and Topological Methods for Analyzing Shapes
FRG:协作研究:分析形状的几何和拓扑方法
  • 批准号:
    1760527
  • 财政年份:
    2018
  • 资助金额:
    $ 8.19万
  • 项目类别:
    Standard Grant
ABI Innovation: Fast Algorithms and Tools for Single-Molecule Sequencing Reads
ABI 创新:单分子测序读取的快速算法和工具
  • 批准号:
    1759856
  • 财政年份:
    2018
  • 资助金额:
    $ 8.19万
  • 项目类别:
    Standard Grant
Discrete Conformal Geometry of Surfaces and Applications
曲面的离散共形几何及其应用
  • 批准号:
    1811878
  • 财政年份:
    2018
  • 资助金额:
    $ 8.19万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Theory and Algorithms for Discrete Curvatures on Network Data from Human Mobility and Monitoring
合作研究:ATD:人体移动和监测网络数据离散曲率的理论和算法
  • 批准号:
    1737876
  • 财政年份:
    2017
  • 资助金额:
    $ 8.19万
  • 项目类别:
    Standard Grant
Geometry and Topology of Polyhedral Surfaces
多面体表面的几何和拓扑
  • 批准号:
    1405106
  • 财政年份:
    2014
  • 资助金额:
    $ 8.19万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: ATD: Algorithmic Aspects of Geometry for Using LIDAR and Wireless Sensor Networks for Combating Chemical Terror Attacks
合作研究:ATD:使用激光雷达和无线传感器网络对抗化学恐怖袭击的几何算法
  • 批准号:
    1222663
  • 财政年份:
    2012
  • 资助金额:
    $ 8.19万
  • 项目类别:
    Standard Grant
Teichmuller Theory and Quantum Topology
泰希米勒理论和量子拓扑
  • 批准号:
    1207832
  • 财政年份:
    2012
  • 资助金额:
    $ 8.19万
  • 项目类别:
    Standard Grant

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: Geometric and topological mechanics of flexible structures
职业:柔性结构的几何和拓扑力学
  • 批准号:
    2338492
  • 财政年份:
    2024
  • 资助金额:
    $ 8.19万
  • 项目类别:
    Continuing Grant
Geometric structures and twisted supersymmetry
几何结构和扭曲超对称
  • 批准号:
    EP/X014959/1
  • 财政年份:
    2023
  • 资助金额:
    $ 8.19万
  • 项目类别:
    Research Grant
Deformation spaces of geometric structures
几何结构的变形空间
  • 批准号:
    2304636
  • 财政年份:
    2023
  • 资助金额:
    $ 8.19万
  • 项目类别:
    Standard Grant
Understanding of physical properties on carbon networks with unique geometric structures
了解具有独特几何结构的碳网络的物理特性
  • 批准号:
    23K17661
  • 财政年份:
    2023
  • 资助金额:
    $ 8.19万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Geometric structures on surfaces and harmonic maps
表面上的几何结构和调和图
  • 批准号:
    23KJ1468
  • 财政年份:
    2023
  • 资助金额:
    $ 8.19万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Topological Quantum Field Theory and Geometric Structures in Low Dimensional Topology
低维拓扑中的拓扑量子场论和几何结构
  • 批准号:
    2304033
  • 财政年份:
    2023
  • 资助金额:
    $ 8.19万
  • 项目类别:
    Standard Grant
Reconsideration of the information geometric structures from the view point of deformed thermostatistics
从变形恒温学角度重新思考信息几何结构
  • 批准号:
    22K03431
  • 财政年份:
    2022
  • 资助金额:
    $ 8.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Deformations of Geometric Structures in Current Mathematics
合作研究:当代数学中几何结构的变形
  • 批准号:
    2212148
  • 财政年份:
    2022
  • 资助金额:
    $ 8.19万
  • 项目类别:
    Standard Grant
Geometric structures in low dimensions
低维几何结构
  • 批准号:
    RGPIN-2017-05403
  • 财政年份:
    2022
  • 资助金额:
    $ 8.19万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric hydrodynamics and Hamiltonian structures
几何流体动力学和哈密顿结构
  • 批准号:
    RGPIN-2019-05209
  • 财政年份:
    2022
  • 资助金额:
    $ 8.19万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了