Partially Wrapped Fukaya Categories and Functoriality in Mirror Symmetry
镜像对称中的部分包裹深谷范畴和函子性
基本信息
- 批准号:2202984
- 负责人:
- 金额:$ 53.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In modern geometry it is often useful to think of spaces in non-local terms rather than relying on classical concepts such as position. This is especially true of symplectic geometry -- the geometry of phase spaces of classical mechanics, where points are "too small" to be relevant, and it is more natural to consider objects called Lagrangian submanifolds. These objects and their interactions are encoded by an algebraic structure (or "non-commutative space") called the Fukaya category. A remarkable mathematical conjecture inspired by ideas from theoretical physics, "homological mirror symmetry", asserts that Fukaya categories are in fact often equivalent to honest (commutative) spaces of the sort studied in algebraic geometry. This research project studies versions of Fukaya categories for symplectic manifolds equipped with one or more (commuting) functions and/or relative to certain directions at infinity. The rich structure of these categories, coming from the additional data, yields new ways of understanding the effect of various geometric constructions on the Fukaya category of a symplectic manifold; this in turn should greatly extend the range of settings in which homological mirror symmetry can be verified. The project will also provide research opportunities for several graduate students and generally aim to make this research area more accessible to the broader mathematical community. From a technical standpoint, the first goal of this project is to develop a better geometric setup for partially wrapped Fukaya categories as they arise in mirror symmetry, to arrive at a formulation where computations are possible and the expected structural features are manifest. The other main goal is to use these foundations to give a general proof of homological mirror symmetry for (not necessarily Calabi-Yau) complete intersections in toric varieties, and to study canonical bases of their coordinate rings. Finally, this project will also bring conceptual clarity to the field by unifying different proposed constructions of partially wrapped Fukaya categories, finding new instances of functoriality in mirror symmetry, and studying the interplay between geometric constructions and categorical ones.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在现代几何中,用非局部术语来考虑空间,而不是依赖于位置等经典概念,往往是有用的。辛几何——经典力学的相空间几何,其中的点“太小”而不相关,考虑称为拉格朗日子流形的对象更自然。这些对象及其相互作用由称为深谷范畴的代数结构(或“非交换空间”)编码。一个引人注目的数学猜想受到理论物理思想的启发,“同调镜像对称”,断言深谷范畴实际上通常等同于代数几何中研究的那种诚实(交换)空间。本研究项目研究具有一个或多个(交换)函数和/或在无穷远处相对于某些方向的辛流形的Fukaya范畴的版本。这些类别的丰富结构来自于附加数据,提供了理解各种几何结构对辛流形的深谷范畴的影响的新方法;这反过来应该大大扩展设置的范围,在其中,同调镜像对称可以被验证。该项目还将为一些研究生提供研究机会,总体目标是使这一研究领域更容易被更广泛的数学界所接受。从技术角度来看,这个项目的第一个目标是为部分包裹的深谷类别开发一个更好的几何设置,因为它们在镜像对称中出现,达到一个公式,其中计算是可能的,预期的结构特征是明显的。另一个主要目标是利用这些基础给出环变中(不一定是Calabi-Yau)完全交的同调镜像对称的一般证明,并研究其坐标环的正则基。最后,该项目还将通过统一部分包裹的Fukaya类别的不同提议结构,寻找镜像对称的新功能实例,以及研究几何结构和分类结构之间的相互作用,为该领域带来概念清晰度。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Denis Auroux其他文献
Lagrangian Floer theory for trivalent graphs and homological mirror symmetry for curves
- DOI:
10.1007/s00029-024-00988-6 - 发表时间:
2024-10-22 - 期刊:
- 影响因子:1.200
- 作者:
Denis Auroux;Alexander I. Efimov;Ludmil Katzarkov - 通讯作者:
Ludmil Katzarkov
Mirror symmetry for Del Pezzo surfaces: Vanishing cycles and coherent sheaves THANKSREF="*" ID="*" DA was partially supported by NSF grant DMS-0244844. LK was partially supported by NSF grant DMS-0600800 and NSA grant H98230-04-1-0038. DO was partially supported by the Weyl Fund, the Civilian Research Development Foundation (CRDF grant No. RUM1-2661-MO-05), the Russian Foundation for Basic Research (No. 05-01-01034), and the Russian Science Support Foundation.
- DOI:
10.1007/s00222-006-0003-4 - 发表时间:
2006-07-11 - 期刊:
- 影响因子:3.600
- 作者:
Denis Auroux;Ludmil Katzarkov;Dmitri Orlov - 通讯作者:
Dmitri Orlov
Infinitely many monotone Lagrangian tori in $$\mathbb {R}^6$$
- DOI:
10.1007/s00222-014-0561-9 - 发表时间:
2014-11-13 - 期刊:
- 影响因子:3.600
- 作者:
Denis Auroux - 通讯作者:
Denis Auroux
Khovanov–Seidel quiver algebras and bordered Floer homology
- DOI:
10.1007/s00029-012-0106-2 - 发表时间:
2012-10-11 - 期刊:
- 影响因子:1.200
- 作者:
Denis Auroux;J. Elisenda Grigsby;Stephan M. Wehrli - 通讯作者:
Stephan M. Wehrli
Denis Auroux的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Denis Auroux', 18)}}的其他基金
Conference: Current Developments in Mathematics
会议:数学的当前发展
- 批准号:
1933415 - 财政年份:2019
- 资助金额:
$ 53.91万 - 项目类别:
Continuing Grant
Admissible Lagrangians, Fukaya categories, and homological mirror symmetry.
可接受的拉格朗日量、深谷范畴和同调镜像对称性。
- 批准号:
1937869 - 财政年份:2019
- 资助金额:
$ 53.91万 - 项目类别:
Continuing Grant
Admissible Lagrangians, Fukaya categories, and homological mirror symmetry.
可接受的拉格朗日量、深谷范畴和同调镜像对称性。
- 批准号:
1702049 - 财政年份:2017
- 资助金额:
$ 53.91万 - 项目类别:
Continuing Grant
Lagrangian Floer homology and the geometry of homological mirror symmetry
拉格朗日弗洛尔同调和同调镜像对称的几何
- 批准号:
1406274 - 财政年份:2014
- 资助金额:
$ 53.91万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Wall-crossings in Geometry and Physics
FRG:合作研究:几何和物理的跨越
- 批准号:
1264662 - 财政年份:2013
- 资助金额:
$ 53.91万 - 项目类别:
Standard Grant
Floer homology, low-dimensional topology, and mirror symmetry
Florer 同调、低维拓扑和镜像对称
- 批准号:
1007177 - 财政年份:2010
- 资助金额:
$ 53.91万 - 项目类别:
Continuing Grant
FRG Collaborative Research: Homological Mirror Symmetry and its applications
FRG合作研究:同调镜像对称及其应用
- 批准号:
0652630 - 财政年份:2007
- 资助金额:
$ 53.91万 - 项目类别:
Standard Grant
Geometric and Algebraic Structures in the Group of Hamiltonian Diffeomorphisms
哈密顿微分同胚群中的几何和代数结构
- 批准号:
0706976 - 财政年份:2007
- 资助金额:
$ 53.91万 - 项目类别:
Standard Grant
Lefschetz fibrations in symplectic topology and applications to mirror symmetry
辛拓扑中的莱夫谢茨纤维及其在镜像对称中的应用
- 批准号:
0600148 - 财政年份:2006
- 资助金额:
$ 53.91万 - 项目类别:
Continuing Grant
Approximately holomorphic techniques and monodromy invariants in symplectic topology
辛拓扑中的近似全纯技术和单向不变量
- 批准号:
0244844 - 财政年份:2003
- 资助金额:
$ 53.91万 - 项目类别:
Continuing Grant
相似海外基金
Wrapped Rib antenna into orbit and beyond
卷绕式肋状天线进入轨道及轨道外
- 批准号:
830231 - 财政年份:2021
- 资助金额:
$ 53.91万 - 项目类别:
Innovation Loans
Collaborative Research: HCC: Small: Leveraging a Wrapped Haptic Display to Communicate Robot Learning and Accelerate Human Teaching
合作研究:HCC:小型:利用包裹式触觉显示器来传达机器人学习并加速人类教学
- 批准号:
2129201 - 财政年份:2021
- 资助金额:
$ 53.91万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Small: Leveraging a Wrapped Haptic Display to Communicate Robot Learning and Accelerate Human Teaching
合作研究:HCC:小型:利用包裹式触觉显示器来传达机器人学习并加速人类教学
- 批准号:
2129155 - 财政年份:2021
- 资助金额:
$ 53.91万 - 项目类别:
Standard Grant
ECM Shrink Wrapped Human Cardiomyocytes and Endothelial Cells to Accelerate Myocardial Regeneration
ECM 收缩包裹人心肌细胞和内皮细胞以加速心肌再生
- 批准号:
9924688 - 财政年份:2019
- 资助金额:
$ 53.91万 - 项目类别:
Predicting the effect of wrapped glass fibre reinforced polymers on the compressive strength of wood
预测包裹玻璃纤维增强聚合物对木材抗压强度的影响
- 批准号:
544849-2019 - 财政年份:2019
- 资助金额:
$ 53.91万 - 项目类别:
University Undergraduate Student Research Awards
All-solid-state batteries using yolk-shell, graphene-wrapped silicon nanostructures
使用蛋黄壳、石墨烯包裹的硅纳米结构的全固态电池
- 批准号:
539574-2019 - 财政年份:2019
- 资助金额:
$ 53.91万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Engineering Membrane-Wrapped Nanoparticles for Targeted RNA Delivery
职业:工程膜包裹纳米颗粒用于靶向 RNA 递送
- 批准号:
1752009 - 财政年份:2018
- 资助金额:
$ 53.91万 - 项目类别:
Continuing Grant
SNM: Scalable Nanomanufacturing of Carbon Nanotube Sheet Wrapped Carbon Fibers for Low Density and High Strength Composites
SNM:用于低密度和高强度复合材料的碳纳米管片包裹碳纤维的可扩展纳米制造
- 批准号:
1636306 - 财政年份:2017
- 资助金额:
$ 53.91万 - 项目类别:
Standard Grant
Scale-up production of graphene-wrapped TiO2 nano-flower photocatalyst for hydrogen production
石墨烯包裹的TiO2纳米花光催化剂用于制氢的规模化生产
- 批准号:
481385-2015 - 财政年份:2015
- 资助金额:
$ 53.91万 - 项目类别:
Engage Grants Program