Floer homology, low-dimensional topology, and mirror symmetry

Florer 同调、低维拓扑和镜像对称

基本信息

  • 批准号:
    1007177
  • 负责人:
  • 金额:
    $ 43.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

This project studies the applications of symplectic geometry, and in particular Lagrangian Floer homology, to mirror symmetry and to low-dimensional topology. Lagrangian submanifolds and Fukaya categories lie at the heart of Kontsevich's homological mirror symmetry conjecture and the Strominger-Yau-Zaslow approach to the construction of mirror pairs. The project will focus on geometric phenomena such as instanton corrections in order to gain a better understanding of mirror symmetry and broaden its scope. Lagrangian submanifolds also play a key role in low-dimensional topology, where they enter in the construction of various invariants of 3- and 4-manifolds (closed or with boundary). This motivates the study of bordered Heegaard-Floer homology of 3-manifolds and invariants of broken Lefschetz fibrations on 4-manifolds from the perspective of Fukaya categories of symmetric products, with the aim of providing a richer algebraic framework and revealing new connections.Broadly speaking, this project aims to reinforce the existing connections between various areas of geometry, topology and mathematical physics. Modern theoretical physics has had a tremendous impact on mathematics, and in particular on geometry, where equations arising from field theories have led to new invariants of topological spaces and new conjectures about their geometry. One goal of the project will be to clarify the mathematical validity and scope of predictions inspired by string theory, relating two different areas of mathematics to each other (algebraic geometry, which studies sets defined by polynomial equations, and symplectic geometry, which studies the phase spaces of classical mechanics). On the other hand, the same mathematical ideas have applications to the study of the topology of three and four-dimensional spaces. More specifically, the aim is to explore how slicing such spaces along two-dimensional surfaces can lead to new interpretations of various topological invariants.
这个项目研究辛几何的应用,特别是拉格朗日弗洛尔同调,镜像对称和低维拓扑。 拉格朗日子流形和福谷范畴是孔采维奇同调镜像对称猜想和斯特罗明格-丘-扎斯洛构造镜像对的方法的核心。 该项目将侧重于几何现象,如瞬子校正,以更好地了解镜像对称性并扩大其范围。 拉格朗日子流形在低维拓扑中也起着关键作用,它们参与了3-和4-流形(封闭或有边界)的各种不变量的构造。 从对称积的福谷范畴出发,研究3-流形的有边Heegaard-Floer同调和4-流形上破缺Lefschetz纤维化的不变量,旨在提供更丰富的代数框架,揭示新的联系。广义地说,本项目旨在加强几何、拓扑和数学物理各个领域之间的现有联系。 现代理论物理学对数学产生了巨大的影响,特别是对几何学的影响,在几何学中,由场论产生的方程导致了拓扑空间的新的不变量和关于它们的几何的新的不变量。 该项目的一个目标是澄清数学的有效性和弦理论启发的预测范围,将两个不同的数学领域相互联系起来(代数几何,研究由多项式方程定义的集合,辛几何,研究经典力学的相空间)。 另一方面,同样的数学思想也适用于三维和四维空间的拓扑学研究。 更具体地说,目的是探索如何切片这样的空间沿着二维表面可以导致各种拓扑不变量的新的解释。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Denis Auroux其他文献

Lagrangian Floer theory for trivalent graphs and homological mirror symmetry for curves
  • DOI:
    10.1007/s00029-024-00988-6
  • 发表时间:
    2024-10-22
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Denis Auroux;Alexander I. Efimov;Ludmil Katzarkov
  • 通讯作者:
    Ludmil Katzarkov
Infinitely many monotone Lagrangian tori in $$\mathbb {R}^6$$
  • DOI:
    10.1007/s00222-014-0561-9
  • 发表时间:
    2014-11-13
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Denis Auroux
  • 通讯作者:
    Denis Auroux
Khovanov–Seidel quiver algebras and bordered Floer homology
  • DOI:
    10.1007/s00029-012-0106-2
  • 发表时间:
    2012-10-11
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Denis Auroux;J. Elisenda Grigsby;Stephan M. Wehrli
  • 通讯作者:
    Stephan M. Wehrli

Denis Auroux的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Denis Auroux', 18)}}的其他基金

Partially Wrapped Fukaya Categories and Functoriality in Mirror Symmetry
镜像对称中的部分包裹深谷范畴和函子性
  • 批准号:
    2202984
  • 财政年份:
    2022
  • 资助金额:
    $ 43.64万
  • 项目类别:
    Continuing Grant
Conference: Current Developments in Mathematics
会议:数学的当前发展
  • 批准号:
    1933415
  • 财政年份:
    2019
  • 资助金额:
    $ 43.64万
  • 项目类别:
    Continuing Grant
Admissible Lagrangians, Fukaya categories, and homological mirror symmetry.
可接受的拉格朗日量、深谷范畴和同调镜像对称性。
  • 批准号:
    1937869
  • 财政年份:
    2019
  • 资助金额:
    $ 43.64万
  • 项目类别:
    Continuing Grant
Admissible Lagrangians, Fukaya categories, and homological mirror symmetry.
可接受的拉格朗日量、深谷范畴和同调镜像对称性。
  • 批准号:
    1702049
  • 财政年份:
    2017
  • 资助金额:
    $ 43.64万
  • 项目类别:
    Continuing Grant
Lagrangian Floer homology and the geometry of homological mirror symmetry
拉格朗日弗洛尔同调和同调镜像对称的几何
  • 批准号:
    1406274
  • 财政年份:
    2014
  • 资助金额:
    $ 43.64万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Wall-crossings in Geometry and Physics
FRG:合作研究:几何和物理的跨越
  • 批准号:
    1264662
  • 财政年份:
    2013
  • 资助金额:
    $ 43.64万
  • 项目类别:
    Standard Grant
FRG Collaborative Research: Homological Mirror Symmetry and its applications
FRG合作研究:同调镜像对称及其应用
  • 批准号:
    0652630
  • 财政年份:
    2007
  • 资助金额:
    $ 43.64万
  • 项目类别:
    Standard Grant
Geometric and Algebraic Structures in the Group of Hamiltonian Diffeomorphisms
哈密​​顿微分同胚群中的几何和代数结构
  • 批准号:
    0706976
  • 财政年份:
    2007
  • 资助金额:
    $ 43.64万
  • 项目类别:
    Standard Grant
Lefschetz fibrations in symplectic topology and applications to mirror symmetry
辛拓扑中的莱夫谢茨纤维及其在镜像对称中的应用
  • 批准号:
    0600148
  • 财政年份:
    2006
  • 资助金额:
    $ 43.64万
  • 项目类别:
    Continuing Grant
Approximately holomorphic techniques and monodromy invariants in symplectic topology
辛拓扑中的近似全纯技术和单向不变量
  • 批准号:
    0244844
  • 财政年份:
    2003
  • 资助金额:
    $ 43.64万
  • 项目类别:
    Continuing Grant

相似国自然基金

Fibered纽结的自同胚、Floer同调与4维亏格
  • 批准号:
    12301086
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Heegaard Floer homology and low-dimensional topology
职业:Heegaard Florer 同调和低维拓扑
  • 批准号:
    2237131
  • 财政年份:
    2023
  • 资助金额:
    $ 43.64万
  • 项目类别:
    Continuing Grant
Floer Homology and Immersed Curve Invariants in Low Dimensional Topology
低维拓扑中的Floer同调和浸没曲线不变量
  • 批准号:
    2105501
  • 财政年份:
    2021
  • 资助金额:
    $ 43.64万
  • 项目类别:
    Standard Grant
Floer Homology and Low-Dimensional Topology
Florer 同调和低维拓扑
  • 批准号:
    2104309
  • 财政年份:
    2020
  • 资助金额:
    $ 43.64万
  • 项目类别:
    Standard Grant
Floer Homology and Low-Dimensional Topology
Florer 同调和低维拓扑
  • 批准号:
    2005539
  • 财政年份:
    2020
  • 资助金额:
    $ 43.64万
  • 项目类别:
    Standard Grant
Gauge Theory, Floer Homology, and Invariants of Low-Dimensional Manifolds
规范理论、Floer 同调和低维流形不变量
  • 批准号:
    1949209
  • 财政年份:
    2019
  • 资助金额:
    $ 43.64万
  • 项目类别:
    Continuing Grant
Applications of Gauge Theory and Floer Homology to Low-Dimensional Topology
规范理论和Floer同调在低维拓扑中的应用
  • 批准号:
    1811111
  • 财政年份:
    2018
  • 资助金额:
    $ 43.64万
  • 项目类别:
    Continuing Grant
Heegaard Floer Homology and Low-Dimensional Topology
Heegaard Floer 同调和低维拓扑
  • 批准号:
    1811900
  • 财政年份:
    2018
  • 资助金额:
    $ 43.64万
  • 项目类别:
    Continuing Grant
Low-Dimensional Topology, Floer Homology, and Categorification
低维拓扑、Floer 同调和分类
  • 批准号:
    1806437
  • 财政年份:
    2017
  • 资助金额:
    $ 43.64万
  • 项目类别:
    Standard Grant
Low-Dimensional Topology, Floer Homology, and Categorification
低维拓扑、Floer 同调和分类
  • 批准号:
    1707795
  • 财政年份:
    2017
  • 资助金额:
    $ 43.64万
  • 项目类别:
    Standard Grant
Gauge Theory, Floer Homology, and Invariants of Low-Dimensional Manifolds
规范理论、Floer 同调和低维流形不变量
  • 批准号:
    1707857
  • 财政年份:
    2017
  • 资助金额:
    $ 43.64万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了