Approximately holomorphic techniques and monodromy invariants in symplectic topology
辛拓扑中的近似全纯技术和单向不变量
基本信息
- 批准号:0244844
- 负责人:
- 金额:$ 13.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-01 至 2007-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0244844Denis AurouxThis project aims to study the topology of symplectic manifolds usingapproximately holomorphic techniques (introduced by Donaldson andfurther developped by Auroux) and the corresponding monodromyinvariants. Approximately holomorphic linear systems on symplecticmanifolds give rise to structures such as Lefschetz pencils and maps tothe complex projective plane, whose monodromy is described by morphismswith values in mapping class groups or braid groups. By studying themonodromy invariants of symplectic manifolds, new insight will beobtained into the relationships between symplectic manifolds andcomplex projective manifolds: symplectic versus complex deformationequivalence, isotopy and non-isotopy phenomena, topological constraintson symplectic manifolds. In addition, relating monodromy invariantswith Gromov-Witten invariants or Floer homology should help tounderstand mirror symmetry, while the more combinatorial aspects of theproject are closely related to the algorithmics and computationalcomplexity of mapping class and braid groups.Symplectic manifolds are geometric spaces with special structures,which first arose in the Hamiltonian formulation of classicalmechanics. Mathematicians have recently become very interested in theirgeometry and topology (intrinsic structure), in part due to motivatingquestions from theoretical physics (string theory). This project aimsto study the topology of symplectic manifolds using an approachdevelopped first by S. Donaldson and subsequently by Auroux, whichmakes it possible to obtain a complete description by combinatorialinvariants involving braid groups (a concept closely related to knots).One of the main goals of the project is to relate the topologicalfeatures of symplectic manifolds with those of complex algebraicmanifolds (a more special, much better understood class of geometricspaces). In addition, some applications to other domains such asmathematical physics (the "mirror symmetry" duality in string theory)and cryptography (the computational complexity of combinatorialproblems involving braid groups) will be explored.
DMS-0244844 Denis Auroux该项目旨在使用近似全纯技术(由唐纳森引入并由Auroux进一步发展)和相应的monodromy不变量来研究辛流形的拓扑。辛流形上的近似全纯线性系统产生了诸如Lefschetz束和映射到复射影平面的结构,其单值性由映射类群或辫子群中的值的态射描述。通过研究辛流形的单值不变量,可以对辛流形与复射影流形之间的关系:辛与复变形等价、合痕与非合痕现象、辛流形上的拓扑约束等问题有新的认识。此外,将单值不变量与Gromov-Witten不变量或Floer同调相联系有助于理解镜像对称,而该项目的更多组合方面与映射类和辫子群的算法和计算复杂性密切相关。辛流形是具有特殊结构的几何空间,它首先出现在经典力学的Hamilton公式中。数学家最近对它们的几何和拓扑(内在结构)非常感兴趣,部分原因是来自理论物理(弦理论)的激发性问题。本项目旨在利用S.唐纳森和随后的Auroux,这使得有可能获得一个完整的描述组合不变量涉及辫群(一个概念密切相关的结)。该项目的主要目标之一是将拓扑特征的辛流形与复代数流形(一类更特殊,更好地理解的几何空间)。此外,一些应用到其他领域,如数学物理(“镜像对称”的对偶性在弦理论)和密码学(计算复杂性的组合问题,涉及辫子群)将进行探讨。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Denis Auroux其他文献
Lagrangian Floer theory for trivalent graphs and homological mirror symmetry for curves
- DOI:
10.1007/s00029-024-00988-6 - 发表时间:
2024-10-22 - 期刊:
- 影响因子:1.200
- 作者:
Denis Auroux;Alexander I. Efimov;Ludmil Katzarkov - 通讯作者:
Ludmil Katzarkov
Mirror symmetry for Del Pezzo surfaces: Vanishing cycles and coherent sheaves THANKSREF="*" ID="*" DA was partially supported by NSF grant DMS-0244844. LK was partially supported by NSF grant DMS-0600800 and NSA grant H98230-04-1-0038. DO was partially supported by the Weyl Fund, the Civilian Research Development Foundation (CRDF grant No. RUM1-2661-MO-05), the Russian Foundation for Basic Research (No. 05-01-01034), and the Russian Science Support Foundation.
- DOI:
10.1007/s00222-006-0003-4 - 发表时间:
2006-07-11 - 期刊:
- 影响因子:3.600
- 作者:
Denis Auroux;Ludmil Katzarkov;Dmitri Orlov - 通讯作者:
Dmitri Orlov
Khovanov–Seidel quiver algebras and bordered Floer homology
- DOI:
10.1007/s00029-012-0106-2 - 发表时间:
2012-10-11 - 期刊:
- 影响因子:1.200
- 作者:
Denis Auroux;J. Elisenda Grigsby;Stephan M. Wehrli - 通讯作者:
Stephan M. Wehrli
Infinitely many monotone Lagrangian tori in $$\mathbb {R}^6$$
- DOI:
10.1007/s00222-014-0561-9 - 发表时间:
2014-11-13 - 期刊:
- 影响因子:3.600
- 作者:
Denis Auroux - 通讯作者:
Denis Auroux
Denis Auroux的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Denis Auroux', 18)}}的其他基金
Partially Wrapped Fukaya Categories and Functoriality in Mirror Symmetry
镜像对称中的部分包裹深谷范畴和函子性
- 批准号:
2202984 - 财政年份:2022
- 资助金额:
$ 13.06万 - 项目类别:
Continuing Grant
Conference: Current Developments in Mathematics
会议:数学的当前发展
- 批准号:
1933415 - 财政年份:2019
- 资助金额:
$ 13.06万 - 项目类别:
Continuing Grant
Admissible Lagrangians, Fukaya categories, and homological mirror symmetry.
可接受的拉格朗日量、深谷范畴和同调镜像对称性。
- 批准号:
1937869 - 财政年份:2019
- 资助金额:
$ 13.06万 - 项目类别:
Continuing Grant
Admissible Lagrangians, Fukaya categories, and homological mirror symmetry.
可接受的拉格朗日量、深谷范畴和同调镜像对称性。
- 批准号:
1702049 - 财政年份:2017
- 资助金额:
$ 13.06万 - 项目类别:
Continuing Grant
Lagrangian Floer homology and the geometry of homological mirror symmetry
拉格朗日弗洛尔同调和同调镜像对称的几何
- 批准号:
1406274 - 财政年份:2014
- 资助金额:
$ 13.06万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Wall-crossings in Geometry and Physics
FRG:合作研究:几何和物理的跨越
- 批准号:
1264662 - 财政年份:2013
- 资助金额:
$ 13.06万 - 项目类别:
Standard Grant
Floer homology, low-dimensional topology, and mirror symmetry
Florer 同调、低维拓扑和镜像对称
- 批准号:
1007177 - 财政年份:2010
- 资助金额:
$ 13.06万 - 项目类别:
Continuing Grant
FRG Collaborative Research: Homological Mirror Symmetry and its applications
FRG合作研究:同调镜像对称及其应用
- 批准号:
0652630 - 财政年份:2007
- 资助金额:
$ 13.06万 - 项目类别:
Standard Grant
Geometric and Algebraic Structures in the Group of Hamiltonian Diffeomorphisms
哈密顿微分同胚群中的几何和代数结构
- 批准号:
0706976 - 财政年份:2007
- 资助金额:
$ 13.06万 - 项目类别:
Standard Grant
Lefschetz fibrations in symplectic topology and applications to mirror symmetry
辛拓扑中的莱夫谢茨纤维及其在镜像对称中的应用
- 批准号:
0600148 - 财政年份:2006
- 资助金额:
$ 13.06万 - 项目类别:
Continuing Grant
相似国自然基金
Skew-holomorphic Jacobi形式的算术
- 批准号:10726030
- 批准年份:2007
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
HOLOMORPHIC DYNAMICS AND RELATED THEMES
全态动力学及相关主题
- 批准号:
2247613 - 财政年份:2023
- 资助金额:
$ 13.06万 - 项目类别:
Standard Grant
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
- 批准号:
2109949 - 财政年份:2023
- 资助金额:
$ 13.06万 - 项目类别:
Standard Grant
有限無限次元における有界対称領域上の正則写像に関する研究
有限无限维有界对称域全纯映射研究
- 批准号:
23K03136 - 财政年份:2023
- 资助金额:
$ 13.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on holomorphic mappings of Riemann surfaces --- Geometry of spaces of continuations of Riemann surfaces and applications
黎曼曲面全纯映射研究——黎曼曲面延拓空间的几何及应用
- 批准号:
22K03356 - 财政年份:2022
- 资助金额:
$ 13.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Explicit Methods for non-holomorphic Hilbert Modular Forms
非全纯希尔伯特模形式的显式方法
- 批准号:
EP/V026321/1 - 财政年份:2022
- 资助金额:
$ 13.06万 - 项目类别:
Research Grant
CAREER: Symplectic and Holomorphic Convexity in 4-dimensions
职业:4 维辛凸性和全纯凸性
- 批准号:
2144363 - 财政年份:2022
- 资助金额:
$ 13.06万 - 项目类别:
Continuing Grant
Homotopy theory related to toric varieties and its related geomety
与环面簇相关的同伦理论及其相关几何
- 批准号:
22K03283 - 财政年份:2022
- 资助金额:
$ 13.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometry and Dynamics of Holomorphic Geometric Structures
全纯几何结构的几何与动力学
- 批准号:
2203358 - 财政年份:2022
- 资助金额:
$ 13.06万 - 项目类别:
Continuing Grant
Holomorphic maps between Riemann surfaces
黎曼曲面之间的全纯映射
- 批准号:
21K03287 - 财政年份:2021
- 资助金额:
$ 13.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Heegaard Diagrams and Holomorphic Disks
Heegaard 图和全纯圆盘
- 批准号:
2104536 - 财政年份:2021
- 资助金额:
$ 13.06万 - 项目类别:
Continuing Grant














{{item.name}}会员




