Lefschetz fibrations in symplectic topology and applications to mirror symmetry
辛拓扑中的莱夫谢茨纤维及其在镜像对称中的应用
基本信息
- 批准号:0600148
- 负责人:
- 金额:$ 36.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-060148Denis AurouxDenis Auroux's research project aims to use Lefschetz fibrations, branchedcoverings, and their monodromy invariants (mapping class group or braidgroup factorizations) to study the topology of symplectic 4-manifolds.In particular, Auroux is studying isotopy and non-isotopy phenomena forsingular symplectic curves, the relationship between complex projectivesurfaces and symplectic 4-manifolds, and the role of Luttinger surgeryalong Lagrangian tori in this context. This leads him to explore somealgorithmic aspects of monodromy invariants, most notably algorithms formanipulating braids and braid factorizations, and the Hurwitz problem.He also plans to investigate enumerative invariants for Lefschetzfibrations over the disc, and the relation between the contact homologyof a contact manifold equipped with an open book structure and the Floerhomology of its monodromy. In a different direction, Auroux is exploringKontsevich's homological mirror symmetry conjecture and some of itsgeneralizations, building upon recent joint work with L. Katzarkov andD. Orlov. The main ingredient is the study of Landau-Ginzburg models andtheir symplectic geometry, in order to understand mirror symmetry for someexamples of varieties of general type and explore various constructionsin algebraic geometry from the perspective of homological mirror symmetry. Symplectic manifolds are geometric spaces with special structures (allowingarea measurements, but not distance measurements). While they first arosein the Hamiltonian formulation of classical mechanics, mathematicians haverecently become very interested in their geometry and topology (theirintrinsic "shape"), in part due to motivating questions from theoreticalphysics (string theory). This project aims to study the topology ofsymplectic manifolds using an approach developped first by S. Donaldsonand subsequently by Auroux, which consists in projecting them onto simplermanifolds and studying the points where this projection is "folded".This yields a complete description by combinatorial data, reducing muchof the geometry to purely algorithmic considerations. One of the maingoals of the project is to relate the topological features of symplecticmanifolds with those of complex algebraic manifolds (a more special, muchbetter understood class of geometric spaces). In addition, Auroux is alsoinvestigating the phenomenon of mirror symmetry, by studying the symplecticgeometry of spaces that are "mirror" to some well-understood families ofcomplex manifolds; this is an important question at the interface betweenmathematics and theoretical physics.
Denis Auroux的研究项目旨在使用Lefschetz纤维化,分支覆盖及其单值不变量(映射类群或辫子群分解)来研究辛4-流形的拓扑,特别是Auroux正在研究奇异辛曲线的合痕与非合痕现象,复射影曲面与辛4-流形的关系,and the role作用of Luttinger卢廷格surgeryalong沿Lagrangian拉格朗日tori环面in this context上下文.这使他探索一些算法方面的monodromy不变量,最显着的算法formanipulating辫子和辫子factorizations,和Hurwitz问题。他还计划调查枚举不变量的Lefschetzfibrations在光盘,和接触homologyof一个接触流形配备了一个开放的书结构和Floerhomologyof monodromy之间的关系。在另一个方向,Auroux正在探索Kontsevich的同调镜像对称猜想和它的一些推广,建立在最近与L。Katzarkov和D.奥尔洛夫。主要内容是对Landau-Ginzburg模型及其辛几何的研究,目的是为了理解一般类型簇的镜像对称,并从同调镜像对称的角度探讨代数几何中的各种构造。辛流形是具有特殊结构的几何空间(允许面积测量,但不允许距离测量)。虽然它们最初出现在经典力学的哈密顿公式中,但数学家们最近对它们的几何和拓扑(它们的内在“形状”)非常感兴趣,部分原因是理论物理学(弦理论)的激发问题。本项目的目的是利用S. Donaldsonand随后由Auroux,其中包括在投影到simplermanifold和研究点,这个投影是“folded”.这产生了一个完整的描述组合数据,减少了much的几何纯算法的考虑.该项目的主要目标之一是将辛流形的拓扑特征与复代数流形(一种更特殊、更容易理解的几何空间)的拓扑特征联系起来。此外,Auroux也是调查现象的镜像对称,通过研究symplecticgeometry的空间是“镜像”的一些很好理解的家庭ofcomplex流形;这是一个重要的问题之间的接口betweenmathematics和理论物理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Denis Auroux其他文献
Lagrangian Floer theory for trivalent graphs and homological mirror symmetry for curves
- DOI:
10.1007/s00029-024-00988-6 - 发表时间:
2024-10-22 - 期刊:
- 影响因子:1.200
- 作者:
Denis Auroux;Alexander I. Efimov;Ludmil Katzarkov - 通讯作者:
Ludmil Katzarkov
Mirror symmetry for Del Pezzo surfaces: Vanishing cycles and coherent sheaves THANKSREF="*" ID="*" DA was partially supported by NSF grant DMS-0244844. LK was partially supported by NSF grant DMS-0600800 and NSA grant H98230-04-1-0038. DO was partially supported by the Weyl Fund, the Civilian Research Development Foundation (CRDF grant No. RUM1-2661-MO-05), the Russian Foundation for Basic Research (No. 05-01-01034), and the Russian Science Support Foundation.
- DOI:
10.1007/s00222-006-0003-4 - 发表时间:
2006-07-11 - 期刊:
- 影响因子:3.600
- 作者:
Denis Auroux;Ludmil Katzarkov;Dmitri Orlov - 通讯作者:
Dmitri Orlov
Infinitely many monotone Lagrangian tori in $$\mathbb {R}^6$$
- DOI:
10.1007/s00222-014-0561-9 - 发表时间:
2014-11-13 - 期刊:
- 影响因子:3.600
- 作者:
Denis Auroux - 通讯作者:
Denis Auroux
Khovanov–Seidel quiver algebras and bordered Floer homology
- DOI:
10.1007/s00029-012-0106-2 - 发表时间:
2012-10-11 - 期刊:
- 影响因子:1.200
- 作者:
Denis Auroux;J. Elisenda Grigsby;Stephan M. Wehrli - 通讯作者:
Stephan M. Wehrli
Denis Auroux的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Denis Auroux', 18)}}的其他基金
Partially Wrapped Fukaya Categories and Functoriality in Mirror Symmetry
镜像对称中的部分包裹深谷范畴和函子性
- 批准号:
2202984 - 财政年份:2022
- 资助金额:
$ 36.41万 - 项目类别:
Continuing Grant
Conference: Current Developments in Mathematics
会议:数学的当前发展
- 批准号:
1933415 - 财政年份:2019
- 资助金额:
$ 36.41万 - 项目类别:
Continuing Grant
Admissible Lagrangians, Fukaya categories, and homological mirror symmetry.
可接受的拉格朗日量、深谷范畴和同调镜像对称性。
- 批准号:
1937869 - 财政年份:2019
- 资助金额:
$ 36.41万 - 项目类别:
Continuing Grant
Admissible Lagrangians, Fukaya categories, and homological mirror symmetry.
可接受的拉格朗日量、深谷范畴和同调镜像对称性。
- 批准号:
1702049 - 财政年份:2017
- 资助金额:
$ 36.41万 - 项目类别:
Continuing Grant
Lagrangian Floer homology and the geometry of homological mirror symmetry
拉格朗日弗洛尔同调和同调镜像对称的几何
- 批准号:
1406274 - 财政年份:2014
- 资助金额:
$ 36.41万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Wall-crossings in Geometry and Physics
FRG:合作研究:几何和物理的跨越
- 批准号:
1264662 - 财政年份:2013
- 资助金额:
$ 36.41万 - 项目类别:
Standard Grant
Floer homology, low-dimensional topology, and mirror symmetry
Florer 同调、低维拓扑和镜像对称
- 批准号:
1007177 - 财政年份:2010
- 资助金额:
$ 36.41万 - 项目类别:
Continuing Grant
FRG Collaborative Research: Homological Mirror Symmetry and its applications
FRG合作研究:同调镜像对称及其应用
- 批准号:
0652630 - 财政年份:2007
- 资助金额:
$ 36.41万 - 项目类别:
Standard Grant
Geometric and Algebraic Structures in the Group of Hamiltonian Diffeomorphisms
哈密顿微分同胚群中的几何和代数结构
- 批准号:
0706976 - 财政年份:2007
- 资助金额:
$ 36.41万 - 项目类别:
Standard Grant
Approximately holomorphic techniques and monodromy invariants in symplectic topology
辛拓扑中的近似全纯技术和单向不变量
- 批准号:
0244844 - 财政年份:2003
- 资助金额:
$ 36.41万 - 项目类别:
Continuing Grant
相似海外基金
Structure theorem for varieties of special type focusing on rational connected fibrations and its application to classification theory
关注有理连接纤维的特殊类型品种结构定理及其在分类理论中的应用
- 批准号:
21H00976 - 财政年份:2021
- 资助金额:
$ 36.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Symplectic Surfaces, Lefschetz Fibrations, and Arboreal Skeleta
辛曲面、莱夫谢茨纤维和树栖骨骼
- 批准号:
1904074 - 财政年份:2019
- 资助金额:
$ 36.41万 - 项目类别:
Continuing Grant
Hyper-Kahler Geometry via Lagrangian Fibrations and Symplectic Resolutions
通过拉格朗日纤维和辛分辨率的超卡勒几何
- 批准号:
1949812 - 财政年份:2019
- 资助金额:
$ 36.41万 - 项目类别:
Standard Grant
Hyper-Kahler Geometry via Lagrangian Fibrations and Symplectic Resolutions
通过拉格朗日纤维和辛分辨率的超卡勒几何
- 批准号:
1801818 - 财政年份:2018
- 资助金额:
$ 36.41万 - 项目类别:
Standard Grant
Lagrangian fibrations on irreducible symplectic manifolds. Deformations of Lagrangian subvarieties and affine structures.
不可约辛流形上的拉格朗日纤维。
- 批准号:
223506967 - 财政年份:2012
- 资助金额:
$ 36.41万 - 项目类别:
Research Fellowships
Lagrangian fibrations of symplectic manifolds (C 05)
辛流形的拉格朗日纤维化 (C 05)
- 批准号:
51298617 - 财政年份:2007
- 资助金额:
$ 36.41万 - 项目类别:
CRC/Transregios
Symplectic topology of manifolds, fibrations and transformations
流形、纤维化和变换的辛拓扑
- 批准号:
92913-2001 - 财政年份:2005
- 资助金额:
$ 36.41万 - 项目类别:
Discovery Grants Program - Individual
Symplectic topology of manifolds, fibrations and transformations
流形、纤维化和变换的辛拓扑
- 批准号:
92913-2001 - 财政年份:2004
- 资助金额:
$ 36.41万 - 项目类别:
Discovery Grants Program - Individual
Symplectic topology of manifolds, fibrations and transformations
流形、纤维化和变换的辛拓扑
- 批准号:
92913-2001 - 财政年份:2003
- 资助金额:
$ 36.41万 - 项目类别:
Discovery Grants Program - Individual
Symplectic Topology via Lagrangian Fibrations
通过拉格朗日纤维的辛拓扑
- 批准号:
0204368 - 财政年份:2002
- 资助金额:
$ 36.41万 - 项目类别:
Standard Grant