FRG: Collaborative Research: Wall-crossings in Geometry and Physics

FRG:合作研究:几何和物理的跨越

基本信息

  • 批准号:
    1264662
  • 负责人:
  • 金额:
    $ 26.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-07-01 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

This project will investigate wall-crossing formulas for a wide class of invariants which appear in a priori different situations in mathematics and physics. Mathematically, those invariants are typically described as virtual Euler characteristics of some moduli spaces. The wall-crossing phenomenon is related to the presence of real codimension one "walls" in the space of parameters, where the invariants jump. In the case of Donaldson-Thomas invariants, the walls live in the moduli space of Bridgeland stability conditions on the ppropriate Calabi-Yau categories. Similar walls also occur in the theory of representations of quivers and cluster algebras. In mirror symmetry, walls correspond to jumps in the number of pseudo-holomorphic discs bounded by the torus fibers of an SYZ Lagrangian fibration. In supersymmetric gauge theories in physics, the number of BPS states jumps across "walls of marginal stability". The Kontsevich-Soibelman wall-crossing formulas for Donaldson-Thomas invariants thus occur in the physics literature on topics such as moduli spaces of vector ultiplets of 4-dimensional supersymmetric theories and supersymmetric black holes. Since these various wall-crossing formulas look so similar, one can ask for a common formalism. The aim of the FRG is to study the underlying "wall-crossing structures" and demonstrate hat the above-mentioned similarities are not coincidental, but rather reflect a deep underlying theory.It is a frequently encountered situation in mathematics and physics that numerical quantities which in principle depend on various parameters actually are constant for general parameter values (they are "invariants"), but jump along certain "walls" in the parameter space. Wall-crossing formulas describe these "jumps" quantitatively. The subject of wall-crossing has recently become a very active one due to its relevance to a number of different areas of mathematics and physics. The aim of this project is to develop the concept of "wall-crossing structure" rigorously and apply it to problems both old and new in which wall-crossing formulas appear. The results arising from this project will be in demand by both the mathematics and physics communities. The FRG will also build a research community around this coordinated effort, involving a mix of junior and senior researchers, training opportunities for graduate students, and the rganization of several workshops.
这个项目将研究跨越墙壁公式的一类广泛的不变量,出现在一个先验的不同的情况下,在数学和物理。在数学上,这些不变量通常被描述为某些模空间的虚欧拉特征。越壁现象与参数空间中存在真实的余维一“壁”有关,不变量在此跳跃。在Donaldson-Thomas不变量的情况下,壁存在于适当的Calabi-Yau范畴上的Bridgeland稳定性条件的模空间中。类似的墙也出现在箭图和簇代数的表示理论中。在镜像对称中,墙对应于SYZ拉格朗日纤维化的环面纤维所包围的伪全纯圆盘数量的跳跃。在物理学中的超对称规范理论中,BPS态的数量跨越“边缘稳定性的墙”。因此,唐纳森-托马斯不变量的孔采维奇-索贝尔曼跨壁公式出现在物理学文献中,例如四维超对称理论和超对称黑洞的向量多重态的模空间。由于这些不同的跨墙公式看起来如此相似,人们可以要求一个共同的形式主义。FRG的目的是研究潜在的“跨壁结构”,并证明上述相似性不是巧合,而是反映了一个深刻的潜在理论。在数学和物理学中经常遇到的情况是,原则上取决于各种参数的数值量对于一般参数值实际上是常数(它们是“不变量”),但是在参数空间中沿着沿着某些“墙”跳跃。跨壁公式定量地描述了这些“跳跃”。穿墙的主题最近已经成为一个非常活跃的一个,因为它与数学和物理学的许多不同领域有关。本项目的目的是严格地发展“跨壁结构”的概念,并将其应用于出现跨壁公式的新旧问题。从这个项目产生的结果将在数学和物理界的需求。联邦德国还将围绕这一协调努力建立一个研究社区,包括初级和高级研究人员的混合,研究生的培训机会,以及几个研讨会的组织。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lagrangian fibrations on blowups of toric varieties and mirror symmetry for hypersurfaces
环面变体放大的拉格朗日纤维和超曲面的镜面对称
  • DOI:
    10.1007/s10240-016-0081-9
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abouzaid, Mohammed;Auroux, Denis;Katzarkov, Ludmil
  • 通讯作者:
    Katzarkov, Ludmil
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Denis Auroux其他文献

Lagrangian Floer theory for trivalent graphs and homological mirror symmetry for curves
  • DOI:
    10.1007/s00029-024-00988-6
  • 发表时间:
    2024-10-22
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Denis Auroux;Alexander I. Efimov;Ludmil Katzarkov
  • 通讯作者:
    Ludmil Katzarkov
Khovanov–Seidel quiver algebras and bordered Floer homology
  • DOI:
    10.1007/s00029-012-0106-2
  • 发表时间:
    2012-10-11
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Denis Auroux;J. Elisenda Grigsby;Stephan M. Wehrli
  • 通讯作者:
    Stephan M. Wehrli
Infinitely many monotone Lagrangian tori in $$\mathbb {R}^6$$
  • DOI:
    10.1007/s00222-014-0561-9
  • 发表时间:
    2014-11-13
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Denis Auroux
  • 通讯作者:
    Denis Auroux

Denis Auroux的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Denis Auroux', 18)}}的其他基金

Partially Wrapped Fukaya Categories and Functoriality in Mirror Symmetry
镜像对称中的部分包裹深谷范畴和函子性
  • 批准号:
    2202984
  • 财政年份:
    2022
  • 资助金额:
    $ 26.47万
  • 项目类别:
    Continuing Grant
Conference: Current Developments in Mathematics
会议:数学的当前发展
  • 批准号:
    1933415
  • 财政年份:
    2019
  • 资助金额:
    $ 26.47万
  • 项目类别:
    Continuing Grant
Admissible Lagrangians, Fukaya categories, and homological mirror symmetry.
可接受的拉格朗日量、深谷范畴和同调镜像对称性。
  • 批准号:
    1937869
  • 财政年份:
    2019
  • 资助金额:
    $ 26.47万
  • 项目类别:
    Continuing Grant
Admissible Lagrangians, Fukaya categories, and homological mirror symmetry.
可接受的拉格朗日量、深谷范畴和同调镜像对称性。
  • 批准号:
    1702049
  • 财政年份:
    2017
  • 资助金额:
    $ 26.47万
  • 项目类别:
    Continuing Grant
Lagrangian Floer homology and the geometry of homological mirror symmetry
拉格朗日弗洛尔同调和同调镜像对称的几何
  • 批准号:
    1406274
  • 财政年份:
    2014
  • 资助金额:
    $ 26.47万
  • 项目类别:
    Continuing Grant
Floer homology, low-dimensional topology, and mirror symmetry
Florer 同调、低维拓扑和镜像对称
  • 批准号:
    1007177
  • 财政年份:
    2010
  • 资助金额:
    $ 26.47万
  • 项目类别:
    Continuing Grant
FRG Collaborative Research: Homological Mirror Symmetry and its applications
FRG合作研究:同调镜像对称及其应用
  • 批准号:
    0652630
  • 财政年份:
    2007
  • 资助金额:
    $ 26.47万
  • 项目类别:
    Standard Grant
Geometric and Algebraic Structures in the Group of Hamiltonian Diffeomorphisms
哈密​​顿微分同胚群中的几何和代数结构
  • 批准号:
    0706976
  • 财政年份:
    2007
  • 资助金额:
    $ 26.47万
  • 项目类别:
    Standard Grant
Lefschetz fibrations in symplectic topology and applications to mirror symmetry
辛拓扑中的莱夫谢茨纤维及其在镜像对称中的应用
  • 批准号:
    0600148
  • 财政年份:
    2006
  • 资助金额:
    $ 26.47万
  • 项目类别:
    Continuing Grant
Approximately holomorphic techniques and monodromy invariants in symplectic topology
辛拓扑中的近似全纯技术和单向不变量
  • 批准号:
    0244844
  • 财政年份:
    2003
  • 资助金额:
    $ 26.47万
  • 项目类别:
    Continuing Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 26.47万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 26.47万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 26.47万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 26.47万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 26.47万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 26.47万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 26.47万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 26.47万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 26.47万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 26.47万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了