Lagrangian Floer homology and the geometry of homological mirror symmetry
拉格朗日弗洛尔同调和同调镜像对称的几何
基本信息
- 批准号:1406274
- 负责人:
- 金额:$ 24.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
New ideas from theoretical physics have brought forth a convergence between areas of mathematics as diverse as algebraic geometry (which studies spaces defined by polynomial equations), symplectic geometry (which studies the phase spaces of mechanical systems), and knot theory. This project aims to investigate and establish some of the conjectured relationships between these fields. For example, a deep connection between the symplectic geometry of monomial functions on toric spaces and the algebraic geometry of spaces defined by a single polynomial equation will be studied. The project will also explore a conjecture of physicists Aganagic and Vafa according to which every knot in 3-dimensional space determines a symplectic integrable system in 6 dimensions, whose geometry is in turn related to a recently discovered knot invariant. By testing the validity of recent predictions made by theoretical physicists, this work will enhance our understanding of the emerging and still mysterious connections between various areas of modern geometry.This project will use Lagrangian Floer homology as a tool to explore various geometric aspects of mirror symmetry and its connections to classical questions in symplectic topology and low-dimensional topology. One main goal of the project will be to establish Kontsevich's homological mirror symmetry conjecture (in both directions) for hypersurfaces and complete intersections in affine space, relating the wrapped Fukaya categories and derived categories of affine varieties and their mirror Landau-Ginzburg models to each other. In another direction, this project will develop new constructions of exotic Lagrangian tori in symplectic manifolds, and their relations to toric degenerations and to cluster variety structures on the mirror spaces. Finally, it will seek to provide an interpretation of new knot invariants (such as the quantum A-polynomial recently introduced by physicists Aganagic and Vafa) in terms of mirror symmetry and wall-crossing for Lagrangian tori in Calabi-Yau 3-folds.
理论物理学的新思想带来了数学领域之间的融合,如代数几何(研究由多项式方程定义的空间),辛几何(研究力学系统的相空间)和纽结理论。这个项目的目的是调查和建立这些领域之间的一些固定的关系。例如,将研究复曲面空间上单项函数的辛几何与由单个多项式方程定义的空间的代数几何之间的深层联系。该项目还将探索物理学家Aganagic和Vafa的猜想,根据该猜想,三维空间中的每个结都确定了6维辛可积系统,其几何形状反过来与最近发现的结不变量有关。通过测试理论物理学家最近的预测的有效性,这项工作将提高我们对现代几何各个领域之间正在出现的和仍然神秘的联系的理解。这个项目将使用拉格朗日弗洛尔同调作为工具来探索镜像对称的各个几何方面及其与辛拓扑和低维拓扑中的经典问题的联系。该项目的一个主要目标将是建立Kontsevich的同调镜像对称猜想(在两个方向上)的超曲面和完全交叉仿射空间,有关包裹福谷类别和衍生类别的仿射品种和他们的镜像朗道-金兹伯格模型彼此。在另一个方向上,这个项目将开发新的结构的奇异拉格朗日环面辛流形,和他们的关系,环面退化和集群各种结构的镜像空间。最后,它将寻求从卡拉比-丘3-褶皱中拉格朗日环面的镜像对称性和跨壁性方面提供对新纽结不变量(例如物理学家Aganagic和Vafa最近引入的量子A-多项式)的解释。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lagrangian fibrations on blowups of toric varieties and mirror symmetry for hypersurfaces
环面变体放大的拉格朗日纤维和超曲面的镜面对称
- DOI:10.1007/s10240-016-0081-9
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Abouzaid, Mohammed;Auroux, Denis;Katzarkov, Ludmil
- 通讯作者:Katzarkov, Ludmil
Speculations on homological mirror symmetry for hypersurfaces in (C*)^n
(C*)^n 中超曲面同调镜像对称性的推测
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Auroux, Denis
- 通讯作者:Auroux, Denis
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Denis Auroux其他文献
Lagrangian Floer theory for trivalent graphs and homological mirror symmetry for curves
- DOI:
10.1007/s00029-024-00988-6 - 发表时间:
2024-10-22 - 期刊:
- 影响因子:1.200
- 作者:
Denis Auroux;Alexander I. Efimov;Ludmil Katzarkov - 通讯作者:
Ludmil Katzarkov
Mirror symmetry for Del Pezzo surfaces: Vanishing cycles and coherent sheaves THANKSREF="*" ID="*" DA was partially supported by NSF grant DMS-0244844. LK was partially supported by NSF grant DMS-0600800 and NSA grant H98230-04-1-0038. DO was partially supported by the Weyl Fund, the Civilian Research Development Foundation (CRDF grant No. RUM1-2661-MO-05), the Russian Foundation for Basic Research (No. 05-01-01034), and the Russian Science Support Foundation.
- DOI:
10.1007/s00222-006-0003-4 - 发表时间:
2006-07-11 - 期刊:
- 影响因子:3.600
- 作者:
Denis Auroux;Ludmil Katzarkov;Dmitri Orlov - 通讯作者:
Dmitri Orlov
Infinitely many monotone Lagrangian tori in $$\mathbb {R}^6$$
- DOI:
10.1007/s00222-014-0561-9 - 发表时间:
2014-11-13 - 期刊:
- 影响因子:3.600
- 作者:
Denis Auroux - 通讯作者:
Denis Auroux
Khovanov–Seidel quiver algebras and bordered Floer homology
- DOI:
10.1007/s00029-012-0106-2 - 发表时间:
2012-10-11 - 期刊:
- 影响因子:1.200
- 作者:
Denis Auroux;J. Elisenda Grigsby;Stephan M. Wehrli - 通讯作者:
Stephan M. Wehrli
Denis Auroux的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Denis Auroux', 18)}}的其他基金
Partially Wrapped Fukaya Categories and Functoriality in Mirror Symmetry
镜像对称中的部分包裹深谷范畴和函子性
- 批准号:
2202984 - 财政年份:2022
- 资助金额:
$ 24.57万 - 项目类别:
Continuing Grant
Conference: Current Developments in Mathematics
会议:数学的当前发展
- 批准号:
1933415 - 财政年份:2019
- 资助金额:
$ 24.57万 - 项目类别:
Continuing Grant
Admissible Lagrangians, Fukaya categories, and homological mirror symmetry.
可接受的拉格朗日量、深谷范畴和同调镜像对称性。
- 批准号:
1937869 - 财政年份:2019
- 资助金额:
$ 24.57万 - 项目类别:
Continuing Grant
Admissible Lagrangians, Fukaya categories, and homological mirror symmetry.
可接受的拉格朗日量、深谷范畴和同调镜像对称性。
- 批准号:
1702049 - 财政年份:2017
- 资助金额:
$ 24.57万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Wall-crossings in Geometry and Physics
FRG:合作研究:几何和物理的跨越
- 批准号:
1264662 - 财政年份:2013
- 资助金额:
$ 24.57万 - 项目类别:
Standard Grant
Floer homology, low-dimensional topology, and mirror symmetry
Florer 同调、低维拓扑和镜像对称
- 批准号:
1007177 - 财政年份:2010
- 资助金额:
$ 24.57万 - 项目类别:
Continuing Grant
FRG Collaborative Research: Homological Mirror Symmetry and its applications
FRG合作研究:同调镜像对称及其应用
- 批准号:
0652630 - 财政年份:2007
- 资助金额:
$ 24.57万 - 项目类别:
Standard Grant
Geometric and Algebraic Structures in the Group of Hamiltonian Diffeomorphisms
哈密顿微分同胚群中的几何和代数结构
- 批准号:
0706976 - 财政年份:2007
- 资助金额:
$ 24.57万 - 项目类别:
Standard Grant
Lefschetz fibrations in symplectic topology and applications to mirror symmetry
辛拓扑中的莱夫谢茨纤维及其在镜像对称中的应用
- 批准号:
0600148 - 财政年份:2006
- 资助金额:
$ 24.57万 - 项目类别:
Continuing Grant
Approximately holomorphic techniques and monodromy invariants in symplectic topology
辛拓扑中的近似全纯技术和单向不变量
- 批准号:
0244844 - 财政年份:2003
- 资助金额:
$ 24.57万 - 项目类别:
Continuing Grant
相似国自然基金
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
Floer同调的谱不变量及其在Hamiltonian辛同胚群上的应用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
瞬子Floer同调与Khovanov同调
- 批准号:
- 批准年份:2020
- 资助金额:52 万元
- 项目类别:面上项目
三维切触拓扑,Heegaard Floer同调,和范畴化
- 批准号:11601256
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
辫Floer同调及其推广
- 批准号:11526115
- 批准年份:2015
- 资助金额:2.6 万元
- 项目类别:数学天元基金项目
三维流形的Floer同调
- 批准号:11001147
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Hidden Symmetries: Internal and External Equivariance in Floer Homology
隐藏的对称性:Floer 同调中的内部和外部等变
- 批准号:
2303823 - 财政年份:2023
- 资助金额:
$ 24.57万 - 项目类别:
Standard Grant
CAREER: Heegaard Floer homology and low-dimensional topology
职业:Heegaard Florer 同调和低维拓扑
- 批准号:
2237131 - 财政年份:2023
- 资助金额:
$ 24.57万 - 项目类别:
Continuing Grant
Link Floer Homology and Kleinian Groups
Link Floer 同调和 Kleinian 群
- 批准号:
2417229 - 财政年份:2023
- 资助金额:
$ 24.57万 - 项目类别:
Standard Grant
CAREER: Bordered Floer homology and applications
职业:Bordered Floer 同源性和应用
- 批准号:
2145090 - 财政年份:2022
- 资助金额:
$ 24.57万 - 项目类别:
Continuing Grant
Link Floer Homology and Kleinian Groups
Link Floer 同调和 Kleinian 群
- 批准号:
2203237 - 财政年份:2022
- 资助金额:
$ 24.57万 - 项目类别:
Standard Grant
Equivariant Floer Homology, Concordance, and Homology Cobordism
等变 Floer 同源性、一致性和同源协调性
- 批准号:
2203828 - 财政年份:2022
- 资助金额:
$ 24.57万 - 项目类别:
Standard Grant
New Perspectives in Heegaard Floer Homology
Heegaard Floer 同源性的新视角
- 批准号:
2204375 - 财政年份:2022
- 资助金额:
$ 24.57万 - 项目类别:
Standard Grant
New Directions in Monopole Floer Homology
单极子同源性的新方向
- 批准号:
2203498 - 财政年份:2022
- 资助金额:
$ 24.57万 - 项目类别:
Standard Grant
Floer Homology and Immersed Curve Invariants in Low Dimensional Topology
低维拓扑中的Floer同调和浸没曲线不变量
- 批准号:
2105501 - 财政年份:2021
- 资助金额:
$ 24.57万 - 项目类别:
Standard Grant
Higher Representation Theory and Heegaard Floer Homology
更高表示理论和 Heegaard Floer 同调
- 批准号:
2151786 - 财政年份:2021
- 资助金额:
$ 24.57万 - 项目类别:
Standard Grant














{{item.name}}会员




