Elliptic Boundary Value Problems, Harmonic Analysis and Spectral Theory
椭圆边值问题、调和分析和谱理论
基本信息
- 批准号:0758500
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2009-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed project is aimed at a wide range of problems in the theory of elliptic partial differential equations on rough domains. The ultimate goal is to understand the intricate relations between the geometry of the domain, the nature of the data, the structure of the equation, and the regularity of the solutions. Among other problems, the project addresses fundamental properties of solutions to the higher order elliptic equations in arbitrary domains (such as maximum principle and Wiener criterion), sharp estimates on the solutions of Dirichlet and Neumann problems in terms of the data in the presence of boundary singularities, as well as elliptic operators with complex bounded measurable coefficients. The research plan incorporates techniques originating from different branches of modern analysis (harmonic analysis, operator and spectral theory, function spaces) and promotes the development of new methods, which unravel some completely new phenomena. The elliptic problems naturally arise in various branches of physics, such as electrostatics, thermodynamics, and elasticity. However, despite its long history, the theory of elliptic partial differential equations contains many open questions. This work will contribute to further progress in the aforementioned areas of science and engineering, and the results of the proposed research will be disseminated at various levels: through publications and presentations in national and international professional meetings, communication with researchers in analysis and other fields, formal and informal educational and outreach activities.
拟议的项目是针对广泛的问题,在理论的椭圆型偏微分方程粗糙域。最终目标是理解域的几何形状、数据的性质、方程的结构和解的正则性之间的复杂关系。在其他问题中,该项目涉及任意域中高阶椭圆方程解的基本性质(如最大值原理和Wiener准则),在存在边界奇点的情况下根据数据对Dirichlet和Neumann问题的解的精确估计,以及具有复有界可测系数的椭圆算子。该研究计划结合了源于现代分析(谐波分析,算子和谱理论,函数空间)的不同分支的技术,并促进了新方法的发展,从而揭示了一些全新的现象。椭圆问题自然出现在物理学的各个分支中,如静电学、热力学和弹性力学。然而,尽管历史悠久,椭圆型偏微分方程的理论包含了许多悬而未决的问题。这项工作将有助于在上述科学和工程领域取得进一步进展,拟议研究的结果将在各级传播:通过出版物和在国家和国际专业会议上的介绍,与分析和其他领域的研究人员的交流,正式和非正式的教育和外联活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Svitlana Mayboroda其他文献
Svitlana Mayboroda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Svitlana Mayboroda', 18)}}的其他基金
RAISE-TAQS: The Hidden Structure of the Disorder in Quantum Systems
RAISE-TAQS:量子系统中无序的隐藏结构
- 批准号:
1839077 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Research Term on Real Harmonic Analysis and Its Applications to Partial Differential Equations and Geometric Measure Theory
实调和分析及其在偏微分方程和几何测度理论中的应用研究术语
- 批准号:
1764430 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Nineteenth Riviere-Fabes Symposium; April 15-17, 2016; Minneapolis, MN
第十九届里维埃-法贝斯研讨会;
- 批准号:
1601863 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
"INSPIRE Track 1:" Localization: analysis, control, and design of waves in inhomogeneous media
“INSPIRE Track 1:”定位:非均匀介质中波的分析、控制和设计
- 批准号:
1344235 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Analysis of Partial Differential Equations in non-smooth media
职业:非光滑介质中的偏微分方程分析
- 批准号:
1220089 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Analysis of Partial Differential Equations in non-smooth media
职业:非光滑介质中的偏微分方程分析
- 批准号:
1056004 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Continuing Grant
Elliptic Boundary Value Problems, Harmonic Analysis and Spectral Theory
椭圆边值问题、调和分析和谱理论
- 批准号:
0929382 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Parabolic and elliptic boundary value and free boundary problems
抛物线和椭圆边值以及自由边界问题
- 批准号:
2349846 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Research on the global structure of solutions and their stability for nonlocal boundary value problems by using elliptic functions
利用椭圆函数研究非局部边值问题解的全局结构及其稳定性
- 批准号:
19K03593 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Parabolic methods for elliptic boundary value problems
椭圆边值问题的抛物线方法
- 批准号:
DP180100431 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Discovery Projects
Study on the bifurcation structure of positive solutions for concave-convex mixed nonlinear elliptic boundary value problems with indefinite weights
不定权凹凸混合非线性椭圆边值问题正解的分岔结构研究
- 批准号:
15K04945 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topics in the Theory of Elliptic Boundary Value Problems
椭圆边值问题理论专题
- 批准号:
1458138 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Solvability of elliptic partial differential equations with rough coefficients; the boundary value problems
具有粗糙系数的椭圆偏微分方程的可解性;
- 批准号:
EP/J017450/1 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grant
Topics in the Theory of Elliptic Boundary Value Problems
椭圆边值问题理论专题
- 批准号:
1201104 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
Optimal preconditioners of spectral Discontinuous Galerkin methods for elliptic boundary value problems
椭圆边值问题谱间断Galerkin方法的最优预处理器
- 批准号:
218348188 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Bifurcation analysis for nonlinear elliptic boundary value problems with combined nonlinearity of absorption and blowing up effects arising in population dynamics
群体动力学中吸收和爆炸效应组合非线性的非线性椭圆边值问题的分岔分析
- 批准号:
22540170 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Regularization solutions to shape and topology optimization problems of domains for elliptic boundary value problems
椭圆边值问题域形状和拓扑优化问题的正则化解
- 批准号:
20540113 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)