RAISE-TAQS: The Hidden Structure of the Disorder in Quantum Systems
RAISE-TAQS:量子系统中无序的隐藏结构
基本信息
- 批准号:1839077
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is an interdisciplinary program at the interface of mathematics, quantum semiconductor physics, and the material science of GaN semiconductors, devoted to the rigorous understanding and control of the disordered systems with the aim to grant the power to design, beyond just observing, new quantum objects hidden in disordered semiconductor materials. A program of theoretical and experimental research will be launched which pioneers the use of localized states in disordered semiconductor alloys as quantum dots and offers breakthrough achievements across several related areas which range from mathematics of the disordered systems, to quantum physics, to nanoscale materials design and characterization. The grand goal of this project is to predict and manipulate localization properties of electron matter waves in disordered media in precise, quantifiable, mathematical terms, with the applications to novel well-behaved quantum objects in the localization regions of semiconductor alloys.Specifically, in mathematics, the project aims at the first deterministic theory revealing the precise geometric structure of waves and more general solutions to PDEs in the presence of disorder. The first treatment of localization in Poisson-Schrodinger and similar self-consistent systems, and the first treatment of localization by geometry, and a complete resolution of the problem of absolute continuity of elliptic measure. In experimental material science, the project aims at the inauguration of the field of localization engineering, including designing self-occurring nanostructures, based on the InGaN materials system of LEDs, with desired properties based on the control of electron localization at the microscopic scale, optimization of their exciton properties, control of the transport between the localized states, their relaxation and coherence times. In physics, the goal is a new approach to quantum effects in disordered systems, with the emphasis on the outstanding open problems of decoherence in quantized semiconductor structures. At stake is the demonstration that disorder can greatly improve quantum parameters such as the coherence time, which is the first mandatory step for building stable entangled state generators.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这是一个数学、量子半导体物理和GaN半导体材料科学交叉的跨学科项目,致力于对无序系统的严格理解和控制,旨在赋予设计的能力,而不仅仅是观察隐藏在无序半导体材料中的新量子物体。 将启动一项理论和实验研究计划,开创性地使用无序半导体合金中的局域态作为量子点,并在几个相关领域取得突破性成就,从无序系统的数学到量子物理学,再到纳米材料设计和表征。 该项目的宏伟目标是以精确、可量化的数学术语预测和操纵无序介质中电子物质波的局域化性质,并将其应用于半导体合金局域化区域中的新型行为良好的量子物体。具体而言,在数学方面,该项目的目标是第一个确定性理论,揭示波的精确几何结构和更普遍的解决方案,以偏微分方程的存在,disorder. 第一次处理Poisson-Schrodinger和类似的自洽系统中的局部化问题,第一次用几何方法处理局部化问题,并完全解决了椭圆测度的绝对连续性问题。 在实验材料科学方面,该项目旨在开创本地化工程领域,包括设计基于LED的InGaN材料系统的自发纳米结构,具有基于微观尺度上电子本地化控制的所需特性,优化其激子特性,控制本地化状态之间的传输,其弛豫和相干时间。 在物理学中,目标是无序系统中量子效应的新方法,重点是量子化半导体结构中退相干的突出开放问题。关键是证明无序可以极大地改善量子参数,如相干时间,这是构建稳定纠缠态发生器的第一个强制性步骤。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(52)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bounds on layer potentials with rough inputs for higher order elliptic equations
高阶椭圆方程的粗输入层势的界限
- DOI:10.1112/plms.12241
- 发表时间:2019
- 期刊:
- 影响因子:1.8
- 作者:Barton, Ariel;Hofmann, Steve;Mayboroda, Svitlana
- 通讯作者:Mayboroda, Svitlana
The Dirichlet problem for elliptic operators having a BMO anti-symmetric part
具有 BMO 反对称部分的椭圆算子的狄利克雷问题
- DOI:10.1007/s00208-021-02219-1
- 发表时间:2021
- 期刊:
- 影响因子:1.4
- 作者:Hofmann, Steve;Li, Linhan;Mayboroda, Svitlana;Pipher, Jill
- 通讯作者:Pipher, Jill
Excitons in a disordered medium: A numerical study in InGaN quantum wells
无序介质中的激子:InGaN 量子阱的数值研究
- DOI:10.1103/physrevresearch.4.043004
- 发表时间:2022
- 期刊:
- 影响因子:4.2
- 作者:David, Aurelien;Weisbuch, Claude
- 通讯作者:Weisbuch, Claude
The Dirichlet problem in domains with lower dimensional boundaries
低维边界域中的狄利克雷问题
- DOI:10.4171/rmi/1208
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Feneuil, Joseph;Mayboroda, Svitlana;Zhao, Zihui
- 通讯作者:Zhao, Zihui
Efficiency and Forward Voltage of Blue and Green Lateral LEDs with V-shaped Defects and Random Alloy Fluctuation in Quantum Wells
- DOI:10.1103/physrevapplied.17.014033
- 发表时间:2022-01-25
- 期刊:
- 影响因子:4.6
- 作者:Ho, Cheng-Han;Speck, James S.;Wu, Yuh-Renn
- 通讯作者:Wu, Yuh-Renn
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Svitlana Mayboroda其他文献
Svitlana Mayboroda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Svitlana Mayboroda', 18)}}的其他基金
Research Term on Real Harmonic Analysis and Its Applications to Partial Differential Equations and Geometric Measure Theory
实调和分析及其在偏微分方程和几何测度理论中的应用研究术语
- 批准号:
1764430 - 财政年份:2018
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Nineteenth Riviere-Fabes Symposium; April 15-17, 2016; Minneapolis, MN
第十九届里维埃-法贝斯研讨会;
- 批准号:
1601863 - 财政年份:2016
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
"INSPIRE Track 1:" Localization: analysis, control, and design of waves in inhomogeneous media
“INSPIRE Track 1:”定位:非均匀介质中波的分析、控制和设计
- 批准号:
1344235 - 财政年份:2014
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CAREER: Analysis of Partial Differential Equations in non-smooth media
职业:非光滑介质中的偏微分方程分析
- 批准号:
1220089 - 财政年份:2011
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
CAREER: Analysis of Partial Differential Equations in non-smooth media
职业:非光滑介质中的偏微分方程分析
- 批准号:
1056004 - 财政年份:2011
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Elliptic Boundary Value Problems, Harmonic Analysis and Spectral Theory
椭圆边值问题、调和分析和谱理论
- 批准号:
0758500 - 财政年份:2008
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Elliptic Boundary Value Problems, Harmonic Analysis and Spectral Theory
椭圆边值问题、调和分析和谱理论
- 批准号:
0929382 - 财政年份:2008
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
相似国自然基金
北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
- 批准号:31470312
- 批准年份:2014
- 资助金额:85.0 万元
- 项目类别:面上项目
相似海外基金
QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
- 批准号:
2326628 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
- 批准号:
2326746 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
- 批准号:
2326801 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
- 批准号:
2326840 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
- 批准号:
2326758 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks
QuSeC-TAQS:用于光学原子钟的新型量子算法
- 批准号:
2326810 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
- 批准号:
2326838 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
- 批准号:
2326528 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
QuSeC-TAQS: Quantum Sensing Platform for Biomolecular Analytics
QuSeC-TAQS:用于生物分子分析的量子传感平台
- 批准号:
2326748 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
- 批准号:
2326767 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant