Dynamics of Solutions to the Nonlinear Dispersive PDEs

非线性色散偏微分方程解的动力学

基本信息

  • 批准号:
    0808081
  • 负责人:
  • 金额:
    $ 10.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-06-01 至 2010-12-31
  • 项目状态:
    已结题

项目摘要

The principal investigator will study the behavior of solutions to nonlinear dispersive partial differential equations, in particular, to the nonlinear Schrodinger equation (NLS). The latter equation is representative of a large class of dispersive models, of which it provides the simplest example. The NLS exhibits various types of solutions: some exist in finite time (nonlinear effects dominate over linear); other soliton-like solutions exist globally but may not decay with time (nonlinear and linear effects balance each other), and global-in-time solutions completely disperse with time (nonlinear effects are negligible compared with linear ones). The project will study the dynamics of all types of solutions for the class of dispersive equations with focusing nonlinearities. In particular, a new phenomenon of the contracting-ring blow-up solutions will be explored both analytically and numerically. The concentration phenomenon will be analyzed to obtain a better understanding of the blow-up behavior of such solutions. Results of this project will advance our understanding of various physical phenomena that arise in nonlinear optics, quantum and plasma physics, and fluid dynamics. Talks and mini-lecture series on methods of harmonic analysis and differential equations developed from the proposed research will be delivered at several scientific organizations. As an immediate educational consequence, the project will increase the scientific and mathematical awareness of the Arizona State University student body and thus, in the long run, will enhance the scientific awareness of society. A significant pool of female and minority students at Arizona State University will enable the principal investigator, with her previous experience, to educate a diverse scientific community for the future. She will engage graduate and undergraduate students in her research program. The education of a new generation of problem-solving mathematicians, the dissemination of new methods and techniques, and general scientific advancement will be some of the benefits of this project.
主要的研究人员将研究非线性色散偏微分方程解的行为,特别是非线性薛定谔方程(NLS)。后一个方程代表了一大类色散模型,它提供了最简单的例子。NLS表现出各种类型的解:一些在有限时间内存在(非线性效应超过线性);其他类孤子解全局存在但可能不随时间衰减(非线性和线性效应相互平衡),以及全局时间解完全随时间分散(与线性效应相比,非线性效应可以忽略不计)。该项目将研究一类具有聚焦非线性的色散方程的所有类型解的动力学。特别地,将从解析和数值两方面探讨收缩环爆破解的一种新现象。将对集中现象进行分析,以更好地了解此类解的爆破行为。这个项目的结果将促进我们对非线性光学、量子和等离子体物理以及流体动力学中出现的各种物理现象的理解。将在几个科学组织举办关于调和分析和微分方程式方法的讲座和小型系列讲座。作为一个直接的教育结果,该项目将提高亚利桑那州立大学学生的科学和数学意识,因此,从长远来看,将提高社会的科学意识。亚利桑那州立大学有一大批女性和少数族裔学生,这将使首席研究员凭借她以前的经验,为未来培养一个多样化的科学界。她将让研究生和本科生参与她的研究项目。新一代解决问题的数学家的教育、新方法和新技术的传播以及普遍的科学进步将是该项目的一些好处。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Svetlana Roudenko其他文献

Special Issue on Mathematical Methods in Medical Imaging
  • DOI:
    10.1007/s10915-012-9576-9
  • 发表时间:
    2012-01-18
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Anne Gelb;Rosemary Renaut;Svetlana Roudenko;Douglas Cochran
  • 通讯作者:
    Douglas Cochran
Littlewood–Paley theory for matrix-weighted function spaces
  • DOI:
    10.1007/s00208-020-02088-0
  • 发表时间:
    2021-01-16
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Michael Frazier;Svetlana Roudenko
  • 通讯作者:
    Svetlana Roudenko

Svetlana Roudenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Svetlana Roudenko', 18)}}的其他基金

Joint Applied Mathematics and Statistics Scholarships
应用数学和统计学联合奖学金
  • 批准号:
    2221491
  • 财政年份:
    2023
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Standard Grant
Fifth Workshop on Nonlinear Dispersive Equations
第五届非线性色散方程研讨会
  • 批准号:
    2231021
  • 财政年份:
    2022
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Spectral Analysis in Dispersive Partial Differential Equations
合作研究:色散偏微分方程中的非线性动力学和谱分析
  • 批准号:
    2055130
  • 财政年份:
    2021
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Standard Grant
REU Site: Applied Mathematics Research Program for Undergraduates
REU 网站:本科生应用数学研究计划
  • 批准号:
    2050971
  • 财政年份:
    2021
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Continuing Grant
Nonlinear Partial Differential Equations and Many Particle Systems
非线性偏微分方程和许多粒子系统
  • 批准号:
    1838371
  • 财政年份:
    2018
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Standard Grant
Nonlinear Phenomena in Stochastic and Deterministic Dispersive Partial Differential Equations
随机和确定性色散偏微分方程中的非线性现象
  • 批准号:
    1927258
  • 财政年份:
    2018
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Continuing Grant
Nonlinear Phenomena in Stochastic and Deterministic Dispersive Partial Differential Equations
随机和确定性色散偏微分方程中的非线性现象
  • 批准号:
    1815873
  • 财政年份:
    2018
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Continuing Grant
Nonlinear Partial Differential Equations and Many Particle Systems
非线性偏微分方程和许多粒子系统
  • 批准号:
    1904139
  • 财政年份:
    2018
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Standard Grant
CAREER: Nonlinear phenomena in evolution PDE
职业:演化偏微分方程中的非线性现象
  • 批准号:
    1929029
  • 财政年份:
    2018
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Continuing Grant
International Conference on Partial Differential Equations (COPDE-2015)
国际偏微分方程会议(COPDE-2015)
  • 批准号:
    1535822
  • 财政年份:
    2015
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Standard Grant

相似海外基金

Dynamics of solutions of nonlinear parabolic equations and front propagation phenomena
非线性抛物方程解的动力学和前传播现象
  • 批准号:
    21H00995
  • 财政年份:
    2021
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Well-posedness and global dynamics of solutions to nonlinear partial differential equations
非线性偏微分方程解的适定性和全局动力学
  • 批准号:
    19K14581
  • 财政年份:
    2019
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Structure of solutions to the systems of nonlinear hyperbolic partial differential equations arising in fluid dynamics and conservation laws for phase transition dynamics
流体动力学中出现的非线性双曲偏微分方程组的解的结构和相变动力学守恒定律
  • 批准号:
    23540250
  • 财政年份:
    2011
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dynamics of Solutions to the Nonlinear Dispersive PDEs
非线性色散偏微分方程解的动力学
  • 批准号:
    1104349
  • 财政年份:
    2010
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Standard Grant
Dynamics of solutions for nonlinear dispersive equation
非线性色散方程解的动力学
  • 批准号:
    21540220
  • 财政年份:
    2009
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multiplcitiy and Dynamics of solutions of nonlinear differential equations
非线性微分方程解的多重性和动力学
  • 批准号:
    18540163
  • 财政年份:
    2006
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structures and singular perturbations limits of solutions to the systems of non-strictly hyperbolic nonlinear partial differential equations for the conservation laws in the phase transition dynamics
相变动力学守恒定律非严格双曲非线性偏微分方程组解的结构和奇异摄动极限
  • 批准号:
    18540202
  • 财政年份:
    2006
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Singularity Structure, Longtime Behaviour and Dynamics of Solutions of Nonlinear Evolution Equations (B03)
非线性演化方程解的奇点结构、长期行为和动力学 (B03)
  • 批准号:
    5444878
  • 财政年份:
    2005
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Collaborative Research Centres
Study on Positive Solutions of Nonlinear Elliptic Boundary Value Problems Arising in Population Dynamics
种群动力学中非线性椭圆边值问题的正解研究
  • 批准号:
    16540165
  • 财政年份:
    2004
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multiplicity and dynamics of solutions of nonlinear differential equations
非线性微分方程解的多重性和动力学
  • 批准号:
    14540159
  • 财政年份:
    2002
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了