SGER - Fundamental Understanding of Catalytic Cleavage of Lignin in Ionic Liquids

SGER - 对离子液体中木质素催化裂解的基本了解

基本信息

  • 批准号:
    0849342
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-15 至 2010-02-28
  • 项目状态:
    已结题

项目摘要

0849342EkerdtIntellectual Merit Lignin is one of the major components in lignocellulosic biomass. The recalcitrant nature of lignin toward microbial breakdown is a highly beneficial feature in guarding natural forestry from rapid degradation by nature itself. Even though nature has evolved a number of enzymes that collectively are efficient in hydrolytically cleaving cellulose and hemicelluloses into their building units, the presence of lignin has been known to severely inhibit such activities. This research addresses this most pressing of issues in biomass conversion and seeks to develop processes and insight into key steps in lignin depolymerization, which are first steps in efficient biomass conversion. The research builds on previous studies and literature that demonstrate lignin can be dissolved in ionic liquids and that lignin is attacked by bases. Lignin has a complicated but poorly characterized composition and architecture, which also depend on the plant species and conditions in which the lignocellulosic biomass are produced. To avoid analytical complication for the purposes of understanding the mechanisms involved in base catalyzed hydrolysis of lignin oxygen linkages, this research will study model compounds that contain oxygen linkages found in lignin. The research investigates neutral ionic liquids and basic ionic liquids, each with an optimized amount of water, and with and without using a catalyst. The pH and the temperature of the test media will be controlled and followed. The effects of reaction time, process pressure, base catalyst type and concentration will all be examined. The research will employ aromatic alkali, of which the basicity can be tuned by the alkalinity of the metal ion, the type and the size of aromatic moiety, and polybasicity. Basic aromatic carboxylates will be included in the study to leverage their strong affinity toward lignin structure in a suitable carrier solvent, such as ionic liquids. By selecting catalysts of varying basicity and by varying operating conditions, we propose to target selectively oxygen linkages of different bond strength in different bonding networks. Broader Impacts By working with a number of model compounds that simulate the oxygen linkages in lignin, this research seeks to achieve a fundamental understanding of the mechanisms involved in lignin hydrolytic cleavage. Ionic liquid solvents that dissolve lignin will be used as media to carry out the reactions. Base catalysts with varying basicity will be used to study the effect of base strength in their activity toward the hydrolytic cleavage of oxygen linkages in ionic liquid solvents. The types of oxygen linkages in the model lignin compounds will be ranked according to their ease of cleavage in the presence of a base in ionic liquids. The knowledge to be gained through this research will help design processes for the rapid fragmentation nature of lignin in ionic liquids. Further, building upon an understanding in the hydrolytic cleavage of oxygen linkages in lignin, the model lignin compounds will be further studied in ionic liquids for selective cracking to produce aromatic molecules as potential fuels and chemicals.
木质素是木质纤维素生物质中的主要组分之一。木质素对微生物分解的抑制性质是保护天然林业免受自然本身快速降解的非常有益的特征。尽管自然界已经进化出许多酶,这些酶共同有效地将纤维素和半纤维素水解裂解成它们的结构单元,但已知木质素的存在严重抑制这种活性。这项研究解决了生物质转化中最紧迫的问题,并寻求开发工艺和深入了解木质素解聚的关键步骤,这是有效生物质转化的第一步。这项研究建立在以前的研究和文献的基础上,这些研究和文献表明木质素可以溶解在离子液体中,并且木质素会受到碱的攻击。木质素具有复杂但表征不佳的组成和结构,其还取决于植物种类和产生木质纤维素生物质的条件。为了避免分析复杂的目的,了解碱催化水解的木质素氧键的机制,本研究将研究模型化合物,含有在木质素中发现的氧键。该研究调查了中性离子液体和碱性离子液体,每种离子液体都具有优化的水量,并且使用和不使用催化剂。将控制并遵循试验培养基的pH值和温度。反应时间、工艺压力、碱催化剂类型和浓度的影响都将被检查。该研究将使用芳香族碱,其碱性可以通过金属离子的碱性、芳香族部分的类型和大小以及多碱性来调节。碱性芳香族羧酸盐将被包括在研究中,以利用它们在合适的载体溶剂(如离子液体)中对木质素结构的强亲和力。通过选择不同碱性的催化剂和不同的操作条件,我们建议选择性地靶向不同键合网络中不同键强度的氧键。更广泛的影响通过与一些模拟木质素中氧键的模型化合物合作,本研究旨在对木质素水解裂解所涉及的机制有一个基本的了解。溶解木质素的离子液体溶剂将用作进行反应的介质。具有不同碱度的碱催化剂将用于研究碱强度在其活性中对离子液体溶剂中的氧键的水解裂解的影响。模型木质素化合物中的氧键的类型将根据它们在离子液体中碱存在下裂解的容易程度进行排序。通过这项研究获得的知识将有助于设计离子液体中木质素快速碎片性质的工艺。此外,基于对木质素中氧键水解裂解的理解,将在离子液体中进一步研究模型木质素化合物,以选择性裂解产生作为潜在燃料和化学品的芳族分子。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Ekerdt其他文献

John Ekerdt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Ekerdt', 18)}}的其他基金

Chemical Routes to the Growth of Crystalline Functional Oxides on Germanium
锗上晶体功能氧化物生长的化学路线
  • 批准号:
    1728656
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
GOALI: Zintl Engineering of Epitaxial Ceramic Films on Gallium Nitride
目标:氮化镓上外延陶瓷薄膜的 Zintl 工程
  • 批准号:
    1507970
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Chemical Routes to the Growth of Crystalline Oxides Directly on Germanium for Applications in Future Generation Microelectronic Devices
直接在锗上生长晶体氧化物的化学路线,用于下一代微电子器件
  • 批准号:
    1437050
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Nucleation and Growth of Thin Films and Nanostructures
薄膜和纳米结构的成核和生长
  • 批准号:
    1160195
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
GOALI: Negative Capacitance in Epitaxial Oxide Heterostructures
目标:外延氧化物异质结构中的负电容
  • 批准号:
    1207342
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
GOALI/FRG: Epitaxial Growth of Perovskite Films and Heterostructures by Atomic Layer Deposition and Molecular Beam Epitaxy
GOALI/FRG:通过原子层沉积和分子束外延来外延生长钙钛矿薄膜和异质结构
  • 批准号:
    1006725
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Growth of Ultra Thin Metal Alloy Films
超薄金属合金薄膜的生长
  • 批准号:
    0854345
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Materials World Network: Design, Growth, and Properties of Boron-based Thin Films for Electronics and Nanosized Electronics
材料世界网络:电子和纳米电子器件用硼基薄膜的设计、生长和性能
  • 批准号:
    0603004
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Growth of Ultra Thin Films
超薄膜的生长
  • 批准号:
    0553839
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Hydrocarbon Surface Reactions Over Transition Metals
过渡金属上的碳氢化合物表面反应
  • 批准号:
    8700876
  • 财政年份:
    1987
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Understanding Collisionless Magnetic Reconnection as a Fundamental Heliospheric Process
职业:理解无碰撞磁重联作为基本的日光层过程
  • 批准号:
    2338131
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Can we heal people using electricity? Developing fundamental understanding and bioelectronic devices to exploit bioelectricity in bioengineering.
我们可以用电来治愈人们吗?
  • 批准号:
    MR/X032159/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Understanding Fundamental Mechanisms that Underlie Nano-Neuro Interactions
了解纳米神经相互作用的基本机制
  • 批准号:
    2331330
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAS-Climate: Understanding the fundamental redox chemistry and transport of chloroaluminate anions in ionic liquid electrolytes to develop earth-abundant aluminum ion battery
CAS-Climate:了解离子液体电解质中氯铝酸盐阴离子的基本氧化还原化学和传输,以开发地球上丰富的铝离子电池
  • 批准号:
    2427215
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Towards a Fundamental Understanding of Interface Strain-Driven Pseudomorphic Phase Transformation in Multilayered Nanocomposites
职业生涯:对多层纳米复合材料中界面应变驱动的赝晶相变有一个基本的了解
  • 批准号:
    2340965
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Fundamental Understanding of Chemical Complexity on Crack Tip Plasticity of Refractory Complex Concentrated Alloys
化学复杂性对难熔复合浓缩合金裂纹尖端塑性的基本认识
  • 批准号:
    2316762
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Fundamental understanding of turbulent flow over fluid-saturated complex porous media
对流体饱和复杂多孔介质上湍流的基本理解
  • 批准号:
    EP/W03350X/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Fundamental Understanding of Turbulent Flow over Fluid-Saturated Complex Porous Media
对流体饱和复杂多孔介质上湍流的基本理解
  • 批准号:
    EP/W033550/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Toward Improved Understanding of Fundamental Processes Controlling the Size-Resolved Properties of Particles in the Stratosphere
提高对控制平流层粒子尺寸分辨特性的基本过程的理解
  • 批准号:
    2325458
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ERI: Increasing the Fundamental Understanding of the Auxetic Behavior of Graphene Oxide Membranes
ERI:增加对氧化石墨烯膜拉胀行为的基本了解
  • 批准号:
    2301838
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了