GOALI: Negative Capacitance in Epitaxial Oxide Heterostructures
目标:外延氧化物异质结构中的负电容
基本信息
- 批准号:1207342
- 负责人:
- 金额:$ 48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is jointly funded by the Electronic and Photonic Materials Program (EPM) and Ceramics Program (CER) in the Division of Materials Research (DMR).Technical Description: This GOALI project explores the fundamental materials science problems of integrating a single-crystalline, single-domain ferroelectric material (with polarization out of plane) onto silicon. A ferroelectric layer in series with a dielectric is predicted to produce negative capacitance, which will lower the sub-threshold slope of a field effect transistor and significantly lower the power dissipated in a transistor. This research project develops the materials and the fundamental understanding necessary to make the predictions a reality. Molecular beam epitaxy is used to grow strontium titanate epitaxially on single-crystal silicon as a buffer layer for the nucleation and growth of single-crystal ferroelectric films, such as barium titanate. The research explores routes to integrate these single- crystal layers on silicon, approaches to achieving out-of-plane polarization in the ferroelectric layer for thicknesses up to 50 nanometers, approaches to achieving a single-domain ferroelectric state, and integration of these layers into transistor devices to harness the negative capacitance state of the heterolayers and realize sub-threshold slopes less than 60 millivolts per decade. The experimental growth studies are guided by ab-initio theory, and materials properties are characterized using in-situ and ex-situ methods.Non-technical Description: Scaling of the complementary metal oxide semiconductor (CMOS) technology is at the heart of Moore's law; it is driven by the desire to produce ever faster field effect transistors. However, the faster the transistor is the more heat it generates in the switching process. New device concepts are required to enable significantly lower power dissipation and to realize the full speed potential for the smaller devices. This research project explores one of the new device concepts of using a ferroelectric/dielectric composite film in place of the dielectric that is currently used in field effect transistors - a concept that is yet to be realized because of the challenges in growing the layers with the proper crystal structure and orientation on the silicon surface that forms the transistor. The research combines an interdisciplinary team and explores growth and properties of barium titanate layers (the ferroelectric) on strontium titanate (the dielectric) on a silicon wafer. The research partners university researchers with a technology leader in advanced device design to broaden the student experience as they are exposed to problem definition that keeps the end goal of developing a viable technology front and center. The outreach activities are aimed at attracting high-school female students to physical sciences and engineering; in collaboration with the physics instructors in local high schools, the students spend summers in research groups at the University of Texas at Austin and participate in real science in a supportive environment.
该项目由材料研究部(DMR)的电子与光子材料项目(EPM)和陶瓷项目(CER)联合资助。技术描述:该GOALI项目探索将单晶、单畴铁电材料(具有平面外极化)集成到硅上的基本材料科学问题。预测与电介质串联的铁电层产生负电容,这将降低场效应晶体管的亚阈值斜率并且显著降低晶体管中消耗的功率。该研究项目开发了使预测成为现实所需的材料和基本理解。分子束外延用于在单晶硅上外延生长钛酸锶作为缓冲层,用于成核和生长单晶铁电膜,例如钛酸钡。该研究探索了将这些单晶层集成在硅上的路线,在厚度高达50纳米的铁电层中实现面外极化的方法,实现单畴铁电状态的方法,以及将这些层集成到晶体管器件中以利用异质层的负电容状态并实现小于60毫伏每十倍的亚阈值斜率。实验生长研究是由从头算理论指导,材料特性的特点是使用原位和异位methods.Non-technical描述:互补金属氧化物半导体(CMOS)技术的缩放是在摩尔定律的核心,它是由生产更快的场效应晶体管的愿望驱动。然而,晶体管的速度越快,它在开关过程中产生的热量就越多。需要新的器件概念来显著降低功耗,并实现更小器件的全速潜力。该研究项目探索了一种新的器件概念,即使用铁电/电介质复合膜代替目前用于场效应晶体管的电介质-由于在形成晶体管的硅表面上生长具有适当晶体结构和取向的层的挑战,这一概念尚未实现。该研究结合了一个跨学科的团队,并探索了硅晶片上钛酸锶(电介质)上钛酸钡层(铁电体)的生长和特性。该研究将大学研究人员与先进设备设计的技术领导者合作,以拓宽学生的体验,因为他们接触到问题定义,从而保持开发可行技术前沿和中心的最终目标。这些推广活动旨在吸引高中女生学习物理科学和工程学;学生们与当地高中的物理教师合作,在得克萨斯大学奥斯汀分校的研究小组中度过暑假,并在一个有利的环境中参与真实的科学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Ekerdt其他文献
John Ekerdt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Ekerdt', 18)}}的其他基金
Chemical Routes to the Growth of Crystalline Functional Oxides on Germanium
锗上晶体功能氧化物生长的化学路线
- 批准号:
1728656 - 财政年份:2017
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
GOALI: Zintl Engineering of Epitaxial Ceramic Films on Gallium Nitride
目标:氮化镓上外延陶瓷薄膜的 Zintl 工程
- 批准号:
1507970 - 财政年份:2015
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
Chemical Routes to the Growth of Crystalline Oxides Directly on Germanium for Applications in Future Generation Microelectronic Devices
直接在锗上生长晶体氧化物的化学路线,用于下一代微电子器件
- 批准号:
1437050 - 财政年份:2014
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Nucleation and Growth of Thin Films and Nanostructures
薄膜和纳米结构的成核和生长
- 批准号:
1160195 - 财政年份:2012
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
GOALI/FRG: Epitaxial Growth of Perovskite Films and Heterostructures by Atomic Layer Deposition and Molecular Beam Epitaxy
GOALI/FRG:通过原子层沉积和分子束外延来外延生长钙钛矿薄膜和异质结构
- 批准号:
1006725 - 财政年份:2010
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
Growth of Ultra Thin Metal Alloy Films
超薄金属合金薄膜的生长
- 批准号:
0854345 - 财政年份:2009
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
SGER - Fundamental Understanding of Catalytic Cleavage of Lignin in Ionic Liquids
SGER - 对离子液体中木质素催化裂解的基本了解
- 批准号:
0849342 - 财政年份:2008
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Materials World Network: Design, Growth, and Properties of Boron-based Thin Films for Electronics and Nanosized Electronics
材料世界网络:电子和纳米电子器件用硼基薄膜的设计、生长和性能
- 批准号:
0603004 - 财政年份:2006
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
Hydrocarbon Surface Reactions Over Transition Metals
过渡金属上的碳氢化合物表面反应
- 批准号:
8700876 - 财政年份:1987
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
相似海外基金
Two-Dimensional Material-Based Negative Capacitance Field-Effect Transistors for Energy-Efficient Electronics
用于节能电子产品的基于二维材料的负电容场效应晶体管
- 批准号:
575769-2022 - 财政年份:2022
- 资助金额:
$ 48万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Negative-Capacitance Field-Effect Transistors
负电容场效应晶体管
- 批准号:
573113-2022 - 财政年份:2022
- 资助金额:
$ 48万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Antiferroelectric Negative Capacitance Transistors for Ultra-low Power Computing
职业:用于超低功耗计算的反铁电负电容晶体管
- 批准号:
2047880 - 财政年份:2021
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
A thorough Investigation of Negative Capacitance Model for Ferroelectric-Gated MOSFETs
铁电门控 MOSFET 负电容模型的彻底研究
- 批准号:
1941316 - 财政年份:2020
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Negative-Capacitance Field-Effect Transistors
负电容场效应晶体管
- 批准号:
554211-2020 - 财政年份:2020
- 资助金额:
$ 48万 - 项目类别:
University Undergraduate Student Research Awards
FNR - Fundamentals of Negative Capacitance: Towards New Low Power Electronics
FNR - 负电容基础知识:迈向新型低功耗电子产品
- 批准号:
EP/S010769/1 - 财政年份:2019
- 资助金额:
$ 48万 - 项目类别:
Research Grant
Exploration of Ferroelectric Materials and Negative Capacitance Effect
铁电材料与负电容效应的探索
- 批准号:
504704-2017 - 财政年份:2019
- 资助金额:
$ 48万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Exploration of Ferroelectric Materials and Negative Capacitance Effect
铁电材料与负电容效应的探索
- 批准号:
504704-2017 - 财政年份:2018
- 资助金额:
$ 48万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Exploration of Ferroelectric Materials and Negative Capacitance Effect
铁电材料与负电容效应的探索
- 批准号:
504704-2017 - 财政年份:2017
- 资助金额:
$ 48万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
SHF:Small:Device/Circuit Co-design of Negative Capacitance Transistors
SHF:Small:负电容晶体管的器件/电路协同设计
- 批准号:
1718671 - 财政年份:2017
- 资助金额:
$ 48万 - 项目类别:
Standard Grant