Offchip Interconnect Signaling Scheme with Near Zero Simultaneous Switching Noise

具有近零同步开关噪声的片外互连信令方案

基本信息

  • 批准号:
    0967134
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-05-15 至 2013-05-31
  • 项目状态:
    已结题

项目摘要

The objective of this research is to develop a signaling scheme that produces near zero simultaneous switching noise for I/O circuits switching in a package or printed circuit board. In present packages and printed circuit boards, this is caused by the cavity resonances produced between the power and ground planes due to return path discontinuities. The approach is to replace the power planes using transmission lines that are matched at the source, thereby leading to un-interrupted current return paths. This approach can be applied to both 2D and 3D integrated systems.Intellectual Merit: Today's electronic systems use a low impedance power distribution network. Contrary to this practice, high impedance transmission lines can be used to supply power, thereby eliminating the need for hundreds of capacitors. Using the proposed interconnection topology, it is expected that copper wires in the package would be sufficient to achieve a bandwidth of 1.6TBps or better between multi-core processors and memory.Broader Impacts: The high-risk, far-reaching approach investigated in this program is beyond the current focus of the electronics industry, and thus lends itself to university-based research and development. The findings from this research and the approaches developed will be integrated into graduate and undergraduate courses. K-12 students and high school teachers are expected to participate in research, which provides engineering exposure and stimulates engineering interest.
这项研究的目标是开发一种信令方案,该方案为封装或印刷电路板中的I/O电路开关产生接近零的同时开关噪声。在目前的封装和印刷电路板中,这是由于返回路径不连续而在电源和地平面之间产生的腔谐振引起的。这种方法是使用在源端匹配的传输线来替换电源面,从而导致不间断的电流返回路径。这种方法可以应用于2D和3D集成系统。智能优点:今天的电子系统使用低阻抗配电网络。与这种做法相反,可以使用高阻抗传输线供电,从而消除了对数百个电容器的需要。使用建议的互连拓扑,预计封装中的铜线将足以在多核处理器和内存之间实现1.6Tbps或更高的带宽。广泛影响:该计划中研究的高风险、影响深远的方法超出了当前电子行业的重点,因此适合大学的研究和开发。这项研究的发现和开发的方法将被整合到研究生和本科课程中。预计K-12学生和高中教师将参与研究,这将提供工程经验并激发工程兴趣。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Madhavan Swaminathan其他文献

Vertical Power Delivery for High Performance Computing Systems with Buck-Derived Regulators
具有降压稳压器的高性能计算系统的垂直供电
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sriharini Krishnakumar;Mingeun Choi;Ramin Rahimzadeh Khorasani;Rohit Sharma;Madhavan Swaminathan;Satish Kumar;Inna Partin
  • 通讯作者:
    Inna Partin
Finite difference modeling of multiple planes in packages
封装中多个平面的有限差分建模
Reinforcement Learning Applied to the Optimization of Power Delivery Networks with Multiple Voltage Domains
强化学习应用于多电压域供电网络的优化
Design of High-Speed Links via a Machine Learning Surrogate Model for the Inverse Problem
通过反问题的机器学习代理模型设计高速链路
Effect of wafer level packaging, silicon substrate and board material on gigabit board-silicon-board data transmission
晶圆级封装、硅基板和板材料对千兆板硅板数据传输的影响

Madhavan Swaminathan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Madhavan Swaminathan', 18)}}的其他基金

IUCRC Phase II Georgia Institute of Technology: Center for Advanced Electronics through Machine Learning [CAEML]
IUCRC 第二期佐治亚理工学院:机器学习先进电子学中心 [CAEML]
  • 批准号:
    2345055
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
IUCRC Phase II Georgia Institute of Technology: Center for Advanced Electronics through Machine Learning [CAEML]
IUCRC 第二期佐治亚理工学院:机器学习先进电子学中心 [CAEML]
  • 批准号:
    2137259
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
I/UCRC: Center for Advanced Electronics through Machine Learning (CAEML)
I/UCRC:机器学习先进电子学中心 (CAEML)
  • 批准号:
    1624731
  • 财政年份:
    2016
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Collaborative Research: Planning Grant: I/UCRC for Advanced Electronics through Machine Learning
合作研究:规划补助金:I/UCRC 通过机器学习实现先进电子学
  • 批准号:
    1464539
  • 财政年份:
    2015
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Design and Modeling Framework for Managing Variability in Silicon Interposers for 3D Integration
用于管理 3D 集成硅中介层可变性的设计和建模框架
  • 批准号:
    1129918
  • 财政年份:
    2011
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Inter-University Workshop on Next Generation Package Design
下一代包装设计大学间研讨会
  • 批准号:
    9711762
  • 财政年份:
    1997
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant

相似海外基金

System software construction of quantum computer clusters with quantum interconnect
量子互联量子计算机集群系统软件构建
  • 批准号:
    22KJ1436
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
EAGER: New interconnect for the perovskite-silicon tandem solar cell: optically transparent and electrically conductive multilayer film
EAGER:钙钛矿-硅串联太阳能电池的新型互连件:光学透明且导电的多层薄膜
  • 批准号:
    2314036
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Nest#1-High density Interconnect with Variable Electronics (HIVE)
  • 批准号:
    10701813
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
Nest#1-High density Interconnect with Variable Electronics (HIVE)
  • 批准号:
    10549468
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
Optimized Terabit-per-second Chip-to-Chip Communication over Heterogeneous Interconnect Fabrics
通过异构互连结构优化每秒太比特的芯片间通信
  • 批准号:
    555486-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Alliance Grants
Optimized Terabit-per-second Chip-to-Chip Communication over Heterogeneous Interconnect Fabrics
通过异构互连结构优化每秒太比特的芯片间通信
  • 批准号:
    555486-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Alliance Grants
QuIC ‐ TAQS: A Photon‐Phonon Quantum Interconnect via Brillouin‐Based Optomechanics in Quartz and Superfluid
QuIC – TAQS:通过石英和超流体中基于布里渊的光力学实现光子 – 声子量子互连
  • 批准号:
    2137740
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
QuIC-TAQS: Multifunctional integrated quantum photonic processor for quantum interconnect
QuIC-TAQS:用于量子互连的多功能集成量子光子处理器
  • 批准号:
    2138174
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
An efficient optical interconnect for superconducting quantum computers
用于超导量子计算机的高效光学互连
  • 批准号:
    DP210102020
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Discovery Projects
CNS Core: Small: Wireless Interconnect Networks on Multi-Die Systems
CNS 核心:小型:多芯片系统上的无线互连网络
  • 批准号:
    2008629
  • 财政年份:
    2020
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了