QuIC-TAQS: Multifunctional integrated quantum photonic processor for quantum interconnect
QuIC-TAQS:用于量子互连的多功能集成量子光子处理器
基本信息
- 批准号:2138174
- 负责人:
- 金额:$ 250万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Quantum information technology leverages the fundamental laws of quantum mechanics for information processing, which is expected to significantly advance the capability of computing, sensing, and communication security. The essential underlying backbone is quantum interconnect that can transfer quantum information faithfully between disparate systems. A variety of approaches have been explored for this purpose. So far, their performances are limited and significant challenges remain before they could be implemented in a practical quantum interconnect that requires transferring fragile quantum states faithfully at a high speed, in a scalable fashion, and across a broad spectral range. The project aims to address this challenge, by exploring and developing a multifunctional integrated quantum processing unit for photons that can significantly enhance the quantum connectivity for a future quantum interconnect. This research is expected to offer a new paradigm for processing quantum information carried by photons, opening up a novel path towards the quantum advantage. The technology developed under this program is expected to have profound commercial impact on the industrial sector. The project will contribute to the workforce development for future quantum industry. The associated educational efforts and outreach activities are expected to offer extraordinary materials and inspiration and excellent opportunities for training students from K-12 to graduate students and for broadening the participation from underrepresented and economically disadvantageous groups.This project aims to explore and develop a multifunctional quantum photonic processor on a newly developed scalable and integrated lithium niobate platform, to produce, store, manipulate, and transduce photonic quantum states and scalable quantum bits in a deterministic fashion that is expected to significantly enhance the quantum connectivity for next-generation quantum interconnect. The project leverages our leading expertise in integrated photonics, quantum and nonlinear optics, quantum material science and engineering, and quantum measurement and characterization, to carry out a synergetic fundamental research directed towards realizing efficient photon-photon and photon- ion interactions that would enable a series of quantum logic, transduction, storage, and processing functionalities expected to transform the state-of-the-art of quantum connectivity. The direct telecom compatibility and the platform scalability of the underlying photonic integrated circuit platform enable seamless transition to practical implementation and application in the near future.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子信息技术利用量子力学的基本定律进行信息处理,有望显著提高计算、传感和通信安全的能力。量子互连是基本的基础骨干,它可以在不同的系统之间忠实地传输量子信息。为此目的探索了各种方法。到目前为止,它们的性能是有限的,并且在它们可以在实际的量子互连中实现之前仍然存在重大挑战,这需要以高速,可扩展的方式在宽光谱范围内忠实地传输脆弱的量子态。该项目旨在通过探索和开发一种多功能光子集成量子处理单元来解决这一挑战,该单元可以显着增强未来量子互连的量子连通性。这项研究有望为处理光子携带的量子信息提供一种新的范式,开辟一条通往量子优势的新途径。根据该计划开发的技术预计将对工业部门产生深远的商业影响。该项目将为未来量子产业的劳动力发展做出贡献。相关的教育努力和外联活动预计将为培训从K-12到研究生的学生提供非凡的材料、灵感和极好的机会,并扩大代表性不足和经济上处于不利地位的群体的参与。本项目旨在在新开发的可扩展集成铌酸锂平台上探索和开发多功能量子光子处理器,以确定性的方式产生、存储、操纵和转导光子量子态和可扩展量子比特,有望显著增强下一代量子互连的量子连通性。该项目利用我们在集成光子学、量子和非线性光学、量子材料科学与工程以及量子测量和表征方面的领先专业知识,开展协同基础研究,旨在实现有效的光子-光子和光子-离子相互作用,从而实现一系列量子逻辑、转导、存储和处理功能,有望改变量子连接的最先进水平。直接电信兼容性和底层光子集成电路平台的平台可扩展性使其能够在不久的将来无缝过渡到实际实施和应用。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qiang Lin其他文献
Difficulties in obtaining finite time blowup for fourth-order semilinear Schrodinger equations in the variational method frame
变分法框架下四阶半线性薛定谔方程有限时间爆炸的困难
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0.7
- 作者:
Runzhang Xu;Qiang Lin;Shaohua Chen;Guojun Wen;Wei Lian - 通讯作者:
Wei Lian
Correlation of computed tomography angiography parameters and shock index to assess the transportation risk in aortic dissection patients
CT血管造影参数与休克指数相关性评估主动脉夹层患者转运风险
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Zhi;Qiang Lin;Xue;Qian Xu;Haitao Liu;Junying Lu;Hong;Jian;Bin Cao;Bao;Yu - 通讯作者:
Yu
Construction of bisection model of SPECT bone scan image based on VGGNet
基于VGGNet的SPECT骨扫描图像二等分模型构建
- DOI:
10.1109/aiid51893.2021.9456458 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Ziwen Zheng;Liangxia Liu;Xiaoyan Chen;Qiang Lin - 通讯作者:
Qiang Lin
Nocardia endophytica sp. nov., an endophytic actinomycete isolated from the oil-seed plant Jatropha curcas L.
内生诺卡氏菌
- DOI:
10.1099/ijs.0.027391-0 - 发表时间:
2011-08 - 期刊:
- 影响因子:2.8
- 作者:
Ke Xing,;Guang-Kai Bian;Cheng-Liang Cao;Shu-Kun Tang;Sheng Qin,;Yun Wang;Shi-Min Fei;Qian Miao,;Qiang Lin;Wen-Jun Li;Ji-Hong Jiang - 通讯作者:
Ji-Hong Jiang
Calibration and Correction Method of the Deflection Angle of Rotation Axis Projection on Neutron Tomography
中子层析成像转轴投影偏转角的标定与修正方法
- DOI:
10.1016/j.phpro.2017.06.041 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Zhilong Ji;Qiang Lin;Xu Han;Jiawei Liu;Wen Zhang;Min Yang - 通讯作者:
Min Yang
Qiang Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qiang Lin', 18)}}的其他基金
Single photon nonlinear nanophotonics
单光子非线性纳米光子学
- 批准号:
1810169 - 财政年份:2018
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
RAISE-EQuIP: A high-speed, reconfigurable, fully integrated circuit platform for quantum photonic applications
RAISE-EQuIP:用于量子光子应用的高速、可重新配置、全集成电路平台
- 批准号:
1842691 - 财政年份:2018
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
Novel Sensors for Detecting Single Nanoparticles/Molecules
用于检测单个纳米粒子/分子的新型传感器
- 批准号:
1610674 - 财政年份:2016
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
EFRI ACQUIRE: A Scalable Integrated Quantum Photonic Interconnect
EFRI ACQUIRE:可扩展的集成量子光子互连
- 批准号:
1641099 - 财政年份:2016
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
Collaborative Research: Silicon Carbide Devices for Optomechanics and Photonics
合作研究:用于光机械和光子学的碳化硅器件
- 批准号:
1408517 - 财政年份:2014
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
CAREER: Integrated quantum silicon photonics: Generating high-purity quantum entanglement on a silicon chip
职业:集成量子硅光子学:在硅芯片上产生高纯度量子纠缠
- 批准号:
1351697 - 财政年份:2014
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
相似国自然基金
北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
- 批准号:31470312
- 批准年份:2014
- 资助金额:85.0 万元
- 项目类别:面上项目
相似海外基金
QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
- 批准号:
2326628 - 财政年份:2023
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
- 批准号:
2326746 - 财政年份:2023
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
- 批准号:
2326801 - 财政年份:2023
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
- 批准号:
2326840 - 财政年份:2023
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
- 批准号:
2326758 - 财政年份:2023
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks
QuSeC-TAQS:用于光学原子钟的新型量子算法
- 批准号:
2326810 - 财政年份:2023
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
- 批准号:
2326838 - 财政年份:2023
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
- 批准号:
2326528 - 财政年份:2023
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
QuSeC-TAQS: Quantum Sensing Platform for Biomolecular Analytics
QuSeC-TAQS:用于生物分子分析的量子传感平台
- 批准号:
2326748 - 财政年份:2023
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
- 批准号:
2326767 - 财政年份:2023
- 资助金额:
$ 250万 - 项目类别:
Standard Grant