Materials World Network: The Ideal Nanowire Transistor-Materials Development for Contact-Doped ZnO nanowires

材料世界网:理想的纳米线晶体管材料开发接触掺杂氧化锌纳米线

基本信息

  • 批准号:
    1007886
  • 负责人:
  • 金额:
    $ 43.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-08-01 至 2015-07-31
  • 项目状态:
    已结题

项目摘要

Semiconductor nanowires conjugate the electronic quality of crystalline materials with the possibility of being dispersed in a solvent. Hence, semiconductor nanowires can be used as building blocks for flexible and integrated electronic devices that can be made at low cost using printing technologies. ZnO nanowires are particularly interesting as they naturally form 1D nanostructures and grow in solution at low temperature while maintaining good electronic properties (mobility ~40 cm2/V.s). Nevertheless, there are still several obstacles to the utilization of nanowires in electronic devices that are due to their nanoscopic nature. Namely, contact doping currently limits the performance of ZnO nanowire field-effect transistors (FETs). Making contact to the outside world by making exclusive use of conventional technologies such as photolithography represents a challenge as well. This collaboration between Stanford University and the Max Planck Institute for Solid-State Physics tackles both these problems by synergistically combining expertises. The Stanford team will grow ZnO nanowires in solution with modulated doping along the nanowire length forming n-i-n structures. As a result, the nanowires will have self-alingned contacts. The length of the intrinsic part of the nanowire, which ultimately determines the switching speed of the nanowire when used in a FET, will be simply controlled by the growth time thus allowing facile synthesis of short-channel FETs with long contacts for easy interfacing to the outside world. The Max Planck Institute team will leverage its expertise in device fabrication, including the development of a unique ultra-thin molecular dielectric suitable for short-channel FET fabrication, in order to test materials and eventually build simple nanowire-based circuits.Nanowire-based electronics is a very promising technology. This project will help educate students in the science and engineering of an emerging field thus providing immediate societal benefits. The students participating in the project will also benefit from doing research in an international setting. They will be sent to Germany where they will learn the skills of state-of-the-art device fabrication. Conversely, students involved in the research at the Max-Planck Insitute will learn how to use advanced characterization techniques at Stanford. Thus this project will produce extremely well-rounded individuals, with hands-on experience in a broad range of disciplines, from fundamental Materials Science to the physics of electronic devices. Furthermore the project will educate teachers who will visit Stanford during the summer and will be trained on the use of remote electron microscopy capabilities that they will be able to port to their classes by imaging nanowires and nanowire devices with sub-10 nm resolution.
半导体纳米线将晶体材料的电子性质与分散在溶剂中的可能性结合在一起。因此,半导体纳米线可以用作灵活和集成的电子设备的构建块,这些设备可以使用印刷技术以低成本制造。氧化锌纳米线特别有趣,因为它们自然形成一维纳米结构,并在低温下在溶液中生长,同时保持良好的电子性能(迁移率~40cm2/V.s)。然而,由于纳米线的纳米性质,在电子设备中使用纳米线仍然存在几个障碍。也就是说,接触掺杂目前限制了氧化锌纳米线场效应晶体管(FET)的性能。通过独家使用光刻等传统技术与外部世界联系也是一项挑战。斯坦福大学和马克斯·普朗克固态物理研究所之间的合作通过协同结合专业知识来解决这两个问题。斯坦福大学的团队将在溶液中生长氧化锌纳米线,并沿纳米线的长度进行调制掺杂,形成n-i-n结构。因此,纳米线将具有自对准的接触。纳米线的本征部分的长度最终决定了纳米线在FET中使用时的开关速度,它将简单地由生长时间控制,从而允许轻松地合成具有长接触的短沟道FET,从而易于与外部世界接口。马克斯·普朗克研究所的团队将利用其在器件制造方面的专业知识,包括开发适合于短沟道FET制造的独特的超薄分子介质,以测试材料并最终构建简单的基于纳米线的电路。基于纳米线的电子学是一项非常有前途的技术。该项目将帮助学生在一个新兴领域的科学和工程方面进行教育,从而立即产生社会效益。参与该项目的学生还将受益于在国际环境中进行研究。他们将被送往德国,在那里他们将学习最先进的设备制造技能。相反,在马克斯·普朗克研究所参与这项研究的学生将在斯坦福大学学习如何使用先进的表征技术。因此,这个项目将培养出非常全面的个人,在从基础材料科学到电子设备物理的广泛学科中拥有实践经验。此外,该项目将教育将在夏季访问斯坦福大学的教师,并将接受远程电子显微镜能力的培训,他们将能够通过成像纳米线和低于10纳米分辨率的纳米线设备来移植到他们的课堂上。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alberto Salleo其他文献

Bias Stress Effects in Organic Thin Film Transistors
有机薄膜晶体管中的偏置应力效应
Something out of nothing
无中生有
  • DOI:
    10.1038/nmat4420
  • 发表时间:
    2015-09-14
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    Alberto Salleo
  • 通讯作者:
    Alberto Salleo
Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells
通过高效稳定的小分子受体三元太阳能电池缩小有机光伏的效率-稳定性-成本差距
  • DOI:
    10.1038/nmat4797
  • 发表时间:
    2016-11-21
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    Derya Baran;Raja Shahid Ashraf;David A. Hanifi;Maged Abdelsamie;Nicola Gasparini;Jason A. Röhr;Sarah Holliday;Andrew Wadsworth;Sarah Lockett;Marios Neophytou;Christopher J. M. Emmott;Jenny Nelson;Christoph J. Brabec;Aram Amassian;Alberto Salleo;Thomas Kirchartz;James R. Durrant;Iain McCulloch
  • 通讯作者:
    Iain McCulloch
The role of the third component in ternary organic solar cells
三元有机太阳能电池中第三组分的作用
  • DOI:
    10.1038/s41578-019-0093-4
  • 发表时间:
    2019-03-06
  • 期刊:
  • 影响因子:
    86.200
  • 作者:
    Nicola Gasparini;Alberto Salleo;Iain McCulloch;Derya Baran
  • 通讯作者:
    Derya Baran
High-resolution x-ray analysis of graphene grown on 4H-SiC ( $000\bar 1$ ) at low pressures
  • DOI:
    10.1557/jmr.2013.306
  • 发表时间:
    2014-02-01
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Michael A. Capano;Benjamin M. Capano;Dallas T. Morisette;Alberto Salleo;Sangwon Lee;Michael F. Toney
  • 通讯作者:
    Michael F. Toney

Alberto Salleo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alberto Salleo', 18)}}的其他基金

Molecularly selective sensors based on organic semiconductors and artificial receptors: demonstrations and scaling studies
基于有机半导体和人工受体的分子选择性传感器:演示和规模研究
  • 批准号:
    1804915
  • 财政年份:
    2018
  • 资助金额:
    $ 43.06万
  • 项目类别:
    Standard Grant
Structure-property relationships in novel conjugated mixed conductors
新型共轭混合导体的结构-性能关系
  • 批准号:
    1808401
  • 财政年份:
    2018
  • 资助金额:
    $ 43.06万
  • 项目类别:
    Standard Grant
EAGER:TDM Solar Cells: Collaborative Research: 30%-Efficient, Stable Perovskite/Silicon Monolithic Tandem Solar Cells
EAGER:TDM%20Solar%20Cells:%20%20Collaborative%20Research:%20%20%2030%-高效、%20Stable%20钙钛矿/硅%20Monolithic%20Tandem%20Solar%20Cells
  • 批准号:
    1664669
  • 财政年份:
    2017
  • 资助金额:
    $ 43.06万
  • 项目类别:
    Standard Grant
E2CDA: Type II: A new non-volatile electrochemical transistor as an artificial synapse: device scaling studies
E2CDA:II 型:作为人工突触的新型非易失性电化学晶体管:器件缩放研究
  • 批准号:
    1739795
  • 财政年份:
    2017
  • 资助金额:
    $ 43.06万
  • 项目类别:
    Continuing Grant
DMREF - Collaborative Research: Developing design rules for enhancing mobility in conjugated polymers
DMREF - 协作研究:开发增强共轭聚合物迁移率的设计规则
  • 批准号:
    1533987
  • 财政年份:
    2015
  • 资助金额:
    $ 43.06万
  • 项目类别:
    Standard Grant
Understanding the Links among Structure, Processing, and Electronic/Ionic Properties in Soft Mixed Conductors
了解软混合导体的结构、加工和电子/离子特性之间的联系
  • 批准号:
    1507826
  • 财政年份:
    2015
  • 资助金额:
    $ 43.06万
  • 项目类别:
    Standard Grant
UNS: Fundamental studies of charge transfer states at organic donor-acceptor interfaces for photovoltaics
UNS:光伏有机供体-受体界面电荷转移态的基础研究
  • 批准号:
    1510481
  • 财政年份:
    2015
  • 资助金额:
    $ 43.06万
  • 项目类别:
    Standard Grant
Engineered Grain Boundaries and their Properties in Crystalline Organic Semiconductors
晶体有机半导体中的工程晶界及其特性
  • 批准号:
    1205752
  • 财政年份:
    2012
  • 资助金额:
    $ 43.06万
  • 项目类别:
    Standard Grant
Scalable Synthesis and Metrology of Epitaxial Graphene on SiC
SiC 上外延石墨烯的可扩展合成和计量
  • 批准号:
    0926212
  • 财政年份:
    2009
  • 资助金额:
    $ 43.06万
  • 项目类别:
    Standard Grant
CAREER: Micro-structure and Electrical Properties in Thin Films of Semicrystalline Conjugated Polymers
职业:半晶共轭聚合物薄膜的微观结构和电性能
  • 批准号:
    0645488
  • 财政年份:
    2007
  • 资助金额:
    $ 43.06万
  • 项目类别:
    Continuing Grant

相似国自然基金

国际心脏研究会第二十三届世界大会(XXIII World Congress ISHR)
  • 批准号:
    81942001
  • 批准年份:
    2019
  • 资助金额:
    10 万元
  • 项目类别:
    专项基金项目

相似海外基金

Materials World Network: Collaborative Proposal: Understanding the Optical Response of Designer Epsilon Near Zero Materials
材料世界网络:协作提案:了解设计师 Epsilon 近零材料的光学响应
  • 批准号:
    1711849
  • 财政年份:
    2016
  • 资助金额:
    $ 43.06万
  • 项目类别:
    Continuing Grant
Materials World Network, SusChEM: Hybrid Sol-Gel Route to Chromate-free Anticorrosive Coatings
材料世界网络,SusChEM:混合溶胶-凝胶路线制备无铬酸盐防腐涂料
  • 批准号:
    1313544
  • 财政年份:
    2014
  • 资助金额:
    $ 43.06万
  • 项目类别:
    Standard Grant
Materials World Network: Investigations of Quantum Fluctuation Relations Using Superconducting Qubits
材料世界网络:利用超导量子位研究量子涨落关系
  • 批准号:
    1312421
  • 财政年份:
    2013
  • 资助金额:
    $ 43.06万
  • 项目类别:
    Standard Grant
Materials World Network, SusChEM: Control of Interfacial Chemistry in Reactive Nanolaminates (CIREN)
材料世界网络,SusChEM:反应性纳米层压材料中界面化学的控制(CIREN)
  • 批准号:
    1312525
  • 财政年份:
    2013
  • 资助金额:
    $ 43.06万
  • 项目类别:
    Standard Grant
Materials World Network: Particle-Mediated Control Over Crystallization: From the Pre-Nucleation Stage to the Final Crystal
材料世界网络:粒子介导的结晶控制:从预成核阶段到最终晶体
  • 批准号:
    1312697
  • 财政年份:
    2013
  • 资助金额:
    $ 43.06万
  • 项目类别:
    Standard Grant
Materials World Network: New Functionality in Complex Magnetic Structures with Perpendicular Anisotropy
材料世界网络:具有垂直各向异性的复杂磁结构的新功能
  • 批准号:
    1312750
  • 财政年份:
    2013
  • 资助金额:
    $ 43.06万
  • 项目类别:
    Standard Grant
Materials World Network, SusChEM: Collaborative Electron-lattice Dynamics at an Atomically Controlled Buried Interface
材料世界网络,SusChEM:原子控制掩埋界面的协同电子晶格动力学
  • 批准号:
    1311849
  • 财政年份:
    2013
  • 资助金额:
    $ 43.06万
  • 项目类别:
    Standard Grant
Materials World Network: Crackling Noise
材料世界网:噼啪声
  • 批准号:
    1312160
  • 财政年份:
    2013
  • 资助金额:
    $ 43.06万
  • 项目类别:
    Standard Grant
Materials World Network: Development of high-efficiency photovoltaic devices for optimal performance under a broad range of spectral illumination conditions
材料世界网络:开发高效光伏器件,在广泛的光谱照明条件下实现最佳性能
  • 批准号:
    239013293
  • 财政年份:
    2013
  • 资助金额:
    $ 43.06万
  • 项目类别:
    Research Grants
Materials World Network: Electron-lattice dynamics at an atomically controlled buried interface
材料世界网络:原子控制掩埋界面的电子晶格动力学
  • 批准号:
    240640164
  • 财政年份:
    2013
  • 资助金额:
    $ 43.06万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了