Collaborative Research: Efficient surface-based numerical methods for 3D interfacial flow with surface tension

合作研究:基于表面的高效数值方法,用于具有表面张力的 3D 界面流动

基本信息

  • 批准号:
    1016267
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-10-01 至 2015-09-30
  • 项目状态:
    已结题

项目摘要

The investigators develop and apply efficient boundary integral methods for the motion of interfaces in 3D flow. The methods address a significant difficulty in the numerical computation of fluid interfaces with surface tension or elastic forces in 3D flow. Such forces introduce high order (i.e., high derivative) terms into the evolution equations, which lead to severe stability constraints or `stiffness' for explicit time-integration methods. Furthermore, the high order terms appear in nonlinear and nonlocal operators, making the efficient application of stable implicit methods difficult.The investigators' method relies on using the first and second fundamental coefficients of the surface as dynamical variables, and employs a special parameterization of the interface combined with an analysis of the governing equations at small scales. This enables the efficient application of implicit time-integration methods for 3D flow. The investigators implement the method in canonical interface problems for inviscid fluids, including the Kelvin-Helmholtz, Rayleigh-Taylor, and water wave problems, and study the dynamics of inextensible elastic sheets in inviscid flow and vesicles in 3D viscous flow. Most importantly, they develop a version of the numerical method which uses domain decomposition or overlapping coordinate patches to describe the interface. This has the added benefit of providing a framework for the implementation of spectrally accurate and spatially adaptive methods.Moving boundary problems occur in many diverse areas in, for example, fluid dynamics, materials science, and biology. Specific examples include traveling ocean waves, growing cancer tumors, beating hearts and moving cells and organisms. The investigators develop accurate and efficient `boundary integral'numerical methods for the simulation of moving boundaries in applications.Boundary integral methods are among the most accurate numerical methods for the simulation of moving interfaces, but are often inefficient when the interface is acted on by surface tension or elastic forces. The development of fast and accurate boundary integral methods for 3D interfacial flow with surface tension or elastic forces will be of great benefit in understanding existing applications and developing technology further.
研究人员开发和应用有效的边界积分方法的运动的接口在三维流动。 该方法解决了三维流动中具有表面张力或弹性力的流体界面的数值计算中的一个重大困难。这种力引入高阶(即,高导数)项的演化方程,这导致严重的稳定性约束或'刚度'显式时间积分方法。 此外,高阶项出现在非线性和非局部算子中,使得稳定隐式方法的有效应用变得困难。研究者的方法依赖于使用表面的第一和第二基本系数作为动力学变量,并采用一种特殊的界面参数化结合小尺度下控制方程的分析。这使得隐式时间积分方法在三维流动中的有效应用成为可能。研究人员在无粘流体的典型界面问题中实现了该方法,包括Kelvin-Helmholtz,Rayleigh-Taylor和水波问题,并研究了无粘流中不可伸展弹性片材和3D粘性流中囊泡的动力学。最重要的是,他们开发了一个版本的数值方法,使用区域分解或重叠坐标补丁来描述界面。这有一个额外的好处,提供了一个框架,实现光谱精确和空间自适应的方法。移动边界问题发生在许多不同的领域,例如,流体动力学,材料科学和生物学。 具体的例子包括移动的海浪,生长的癌症肿瘤,跳动的心脏和移动的细胞和有机体。边界积分法是模拟运动界面的最精确的数值方法之一,但当界面受到表面张力或弹性力的作用时,边界积分法的计算效率往往很低。 发展快速、精确的三维界面流边界积分方法,对于理解已有的应用和进一步发展技术将是非常有益的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Ambrose其他文献

The impact of person–environment–occupation transactions on joint attention in children with autism spectrum disorder: A scoping review
人-环境-职业交互对自闭症谱系障碍儿童共同注意力的影响:范围界定审查
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Ambrose;Diane E MacKenzie;Parisa Ghanouni
  • 通讯作者:
    Parisa Ghanouni
Identification, recovery, and impact of ghost fishing gear in the Mullica River-Great Bay Estuary (New Jersey, USA): Stakeholder-driven restoration for smaller-scale systems
  • DOI:
    10.1016/j.marpolbul.2018.10.058
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mark Sullivan;Steven Evert;Peter Straub;Melanie Reding;Nathan Robinson;Elizabeth Zimmermann;David Ambrose
  • 通讯作者:
    David Ambrose

David Ambrose的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Ambrose', 18)}}的其他基金

Well-Posedness and Singularity Formation in Applied Free Boundary Problems
应用自由边界问题中的适定性和奇异性形成
  • 批准号:
    2307638
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Conference: Second Drexel Waves Workshop
会议:第二届德雷塞尔波浪研讨会
  • 批准号:
    2247694
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Partial Differential Equation Methods for Mean Field Games
平均场博弈的偏微分方程方法
  • 批准号:
    1907684
  • 财政年份:
    2019
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
2016 Gene Golub SIAM Summer School at Drexel University
2016年德雷塞尔大学Gene Golub SIAM暑期学校
  • 批准号:
    1613965
  • 财政年份:
    2016
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Dynamics of Dispersive PDE
色散偏微分方程的动力学
  • 批准号:
    1515849
  • 财政年份:
    2015
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Dispersive PDE and Interfacial Fluid Dynamics
色散偏微分方程和界面流体动力学
  • 批准号:
    1008387
  • 财政年份:
    2010
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Long-Time Behavior in Free-Surface Problems in Fluid Dynamics
流体动力学中自由表面问题的长期行为
  • 批准号:
    0926378
  • 财政年份:
    2008
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Long-Time Behavior in Free-Surface Problems in Fluid Dynamics
流体动力学中自由表面问题的长期行为
  • 批准号:
    0707807
  • 财政年份:
    2007
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Analytical and Computational Approaches to Free-Surface Problems in Fluid Dynamics
流体动力学中自由表面问题的分析和计算方法
  • 批准号:
    0610898
  • 财政年份:
    2005
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Analytical and Computational Approaches to Free-Surface Problems in Fluid Dynamics
流体动力学中自由表面问题的分析和计算方法
  • 批准号:
    0406130
  • 财政年份:
    2004
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343606
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Materials-Manufacturing-Controls Framework for Efficient and Resilient Manufacturing Systems
协作研究:高效、弹性制造系统的集成材料制造控制框架
  • 批准号:
    2346650
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Materials-Manufacturing-Controls Framework for Efficient and Resilient Manufacturing Systems
协作研究:高效、弹性制造系统的集成材料制造控制框架
  • 批准号:
    2346651
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
  • 批准号:
    2312886
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
  • 批准号:
    2312884
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium: Efficient Compilation for Dynamically Reconfigurable Atom Arrays
合作研究:FET:中:动态可重构原子阵列的高效编译
  • 批准号:
    2313084
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
  • 批准号:
    2326895
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了