Partial Differential Equation Methods for Mean Field Games
平均场博弈的偏微分方程方法
基本信息
- 批准号:1907684
- 负责人:
- 金额:$ 31.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mean field games are models for problems in which a large number of individuals need to make decisions which are related to those of many other individuals. Many applications of mean field games arise from economics. One example to be treated is modeling the decision of households to allocate their income between savings and consumption; the benefits of a household's decision depend on the decisions that the other households make, since the interest rate in this example is determined through the aggregation of the decisions of all the households. This research will seek to understand mathematical theory of these models; this includes proving that the models have solutions and understanding how these solutions depend upon parameters present in the models. Developing the mean field games theory can have impact on the quality of economic forecasts and economic decision-making. Several graduate and undergraduate students will be trained through participation in this research projectExistence and regularity theory will be developed for solutions of mean field games models, and important asymptotic problems will be investigated. The regularity theory includes demonstrating analytic and Gevrey regularity for solutions which have previously been proved to exist with finite Sobolev regularity. Asymptotic regimes include rigorously studying the limit of differential games with finitely many players as the number of players tends to infinity, studying the limit as diffusion parameters vanish, and studying the limit as the time horizon goes to infinity. Problems with nonseparable Hamiltonian and problems arising from applications, such as the household savings problem, will be emphasized. Mean field games systems are taken with initial and terminal data rather than just initial data; tools from initial value problems in areas such as fluid dynamics will be adapted to the forward-backward setting of mean field games.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
平均场博弈(Mean Field Game)是一种模型,用于解决大量个体需要做出与其他许多个体相关的决策的问题。平均场博弈的许多应用来自经济学。 要处理的一个例子是对家庭在储蓄和消费之间分配收入的决定进行建模;一个家庭的决定的好处取决于其他家庭的决定,因为在这个例子中,利率是通过所有家庭的决定来确定的。 本研究将试图了解这些模型的数学理论;这包括证明模型有解,并了解这些解如何依赖于模型中的参数。平均场博弈理论的发展可以影响经济预测和经济决策的质量。几个研究生和本科生将通过参与本研究项目的培训,存在性和正则性理论将被开发为平均场博弈模型的解决方案,并将研究重要的渐近问题。 正则性理论包括证明解析和Gevrey正则性的解决方案,以前已被证明存在有限Sobolev正则性。 渐近制度包括严格研究的极限微分游戏与许多球员的球员的数量趋于无穷大,研究的极限扩散参数消失,并研究极限的时间范围趋于无穷大。 与不可分的哈密顿量和问题所产生的应用程序,如家庭储蓄问题,将被强调。 平均场博弈系统采用初始和终端数据,而不仅仅是初始数据;流体动力学等领域的初始值问题的工具将适用于平均场博弈的前后向设置。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Existence theory for non-separable mean field games in Sobolev spaces
索博列夫空间中不可分平均场博弈的存在理论
- DOI:10.1512/iumj.2022.71.8900
- 发表时间:2022
- 期刊:
- 影响因子:1.1
- 作者:Ambrose, David
- 通讯作者:Ambrose, David
Global existence and singularity formation for the generalized Constantin–Lax–Majda equation with dissipation: the real line vs. periodic domains
- DOI:10.1088/1361-6544/ad140c
- 发表时间:2022-07
- 期刊:
- 影响因子:1.7
- 作者:D. Ambrose;P. Lushnikov;M. Siegel;Denis A. Silantyev
- 通讯作者:D. Ambrose;P. Lushnikov;M. Siegel;Denis A. Silantyev
Well-posedness, ill-posedness, and traveling waves for models of pulsatile flow in viscoelastic vessels
粘弹性血管脉动流模型的适定性、不适定性和行波
- DOI:10.1007/s00033-022-01874-x
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Kim, Hyeju;Ambrose, David M.
- 通讯作者:Ambrose, David M.
Well-posedness and Ill-posedness for Linear Fifth-Order Dispersive Equations in the Presence of Backwards Diffusion
存在向后扩散的线性五阶色散方程的适定性和不适定性
- DOI:10.1007/s10884-020-09905-9
- 发表时间:2022
- 期刊:
- 影响因子:1.3
- 作者:Ambrose, David M.;Woods, Jacob
- 通讯作者:Woods, Jacob
Existence and analyticity of the Lei-Lin solution of the Navier-Stokes equations on the torus
圆环上Navier-Stokes方程的Lei-Lin解的存在性及解析性
- DOI:10.1090/proc/16615
- 发表时间:2023
- 期刊:
- 影响因子:1
- 作者:Ambrose, David;Lopes Filho, Milton;Nussenzveig Lopes, Helena
- 通讯作者:Nussenzveig Lopes, Helena
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Ambrose其他文献
The impact of person–environment–occupation transactions on joint attention in children with autism spectrum disorder: A scoping review
人-环境-职业交互对自闭症谱系障碍儿童共同注意力的影响:范围界定审查
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
David Ambrose;Diane E MacKenzie;Parisa Ghanouni - 通讯作者:
Parisa Ghanouni
Identification, recovery, and impact of ghost fishing gear in the Mullica River-Great Bay Estuary (New Jersey, USA): Stakeholder-driven restoration for smaller-scale systems
- DOI:
10.1016/j.marpolbul.2018.10.058 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:
- 作者:
Mark Sullivan;Steven Evert;Peter Straub;Melanie Reding;Nathan Robinson;Elizabeth Zimmermann;David Ambrose - 通讯作者:
David Ambrose
David Ambrose的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Ambrose', 18)}}的其他基金
Well-Posedness and Singularity Formation in Applied Free Boundary Problems
应用自由边界问题中的适定性和奇异性形成
- 批准号:
2307638 - 财政年份:2023
- 资助金额:
$ 31.7万 - 项目类别:
Standard Grant
Conference: Second Drexel Waves Workshop
会议:第二届德雷塞尔波浪研讨会
- 批准号:
2247694 - 财政年份:2023
- 资助金额:
$ 31.7万 - 项目类别:
Standard Grant
2016 Gene Golub SIAM Summer School at Drexel University
2016年德雷塞尔大学Gene Golub SIAM暑期学校
- 批准号:
1613965 - 财政年份:2016
- 资助金额:
$ 31.7万 - 项目类别:
Standard Grant
Dispersive PDE and Interfacial Fluid Dynamics
色散偏微分方程和界面流体动力学
- 批准号:
1008387 - 财政年份:2010
- 资助金额:
$ 31.7万 - 项目类别:
Continuing Grant
Collaborative Research: Efficient surface-based numerical methods for 3D interfacial flow with surface tension
合作研究:基于表面的高效数值方法,用于具有表面张力的 3D 界面流动
- 批准号:
1016267 - 财政年份:2010
- 资助金额:
$ 31.7万 - 项目类别:
Continuing Grant
Long-Time Behavior in Free-Surface Problems in Fluid Dynamics
流体动力学中自由表面问题的长期行为
- 批准号:
0926378 - 财政年份:2008
- 资助金额:
$ 31.7万 - 项目类别:
Standard Grant
Long-Time Behavior in Free-Surface Problems in Fluid Dynamics
流体动力学中自由表面问题的长期行为
- 批准号:
0707807 - 财政年份:2007
- 资助金额:
$ 31.7万 - 项目类别:
Standard Grant
Analytical and Computational Approaches to Free-Surface Problems in Fluid Dynamics
流体动力学中自由表面问题的分析和计算方法
- 批准号:
0610898 - 财政年份:2005
- 资助金额:
$ 31.7万 - 项目类别:
Standard Grant
Analytical and Computational Approaches to Free-Surface Problems in Fluid Dynamics
流体动力学中自由表面问题的分析和计算方法
- 批准号:
0406130 - 财政年份:2004
- 资助金额:
$ 31.7万 - 项目类别:
Standard Grant
相似海外基金
Partial differential equation: Schrodinger operator and long-time dynamics
偏微分方程:薛定谔算子和长期动力学
- 批准号:
FT230100588 - 财政年份:2024
- 资助金额:
$ 31.7万 - 项目类别:
ARC Future Fellowships
Learning Partial Differential Equation (PDE) and Beyond
学习偏微分方程 (PDE) 及其他内容
- 批准号:
2309551 - 财政年份:2023
- 资助金额:
$ 31.7万 - 项目类别:
Continuing Grant
Interplay Between Data and Partial Differential Equation Models Through the Lens of Kinetic Equations
通过动力学方程的视角观察数据和偏微分方程模型之间的相互作用
- 批准号:
2308440 - 财政年份:2023
- 资助金额:
$ 31.7万 - 项目类别:
Standard Grant
CAREER: Exploiting Low-Dimensional Structures in Data Science: Manifold Learning, Partial Differential Equation Identification, and Neural Networks
职业:在数据科学中利用低维结构:流形学习、偏微分方程识别和神经网络
- 批准号:
2145167 - 财政年份:2022
- 资助金额:
$ 31.7万 - 项目类别:
Continuing Grant
CAREER: Partial Differential Equation and Randomness
职业:偏微分方程和随机性
- 批准号:
2042384 - 财政年份:2021
- 资助金额:
$ 31.7万 - 项目类别:
Continuing Grant
Partial Differential Equation Methods in Kinetic Theory and Their Applications
运动理论中的偏微分方程方法及其应用
- 批准号:
2106650 - 财政年份:2021
- 资助金额:
$ 31.7万 - 项目类别:
Continuing Grant
General-Domain, Scalable, Accelerated Spectral Partial Differential Equation Solvers and Applications in Simulation and Design
通用域、可扩展、加速谱偏微分方程求解器及其在仿真和设计中的应用
- 批准号:
2109831 - 财政年份:2021
- 资助金额:
$ 31.7万 - 项目类别:
Continuing Grant
CAREER: Partial Differential Equation and Randomness
职业:偏微分方程和随机性
- 批准号:
2203014 - 财政年份:2021
- 资助金额:
$ 31.7万 - 项目类别:
Continuing Grant
Global analysis for solution of dispersive partial differential equation with mass subcritical nonlinearity
具有质量次临界非线性的色散偏微分方程解的全局分析
- 批准号:
21H00993 - 财政年份:2021
- 资助金额:
$ 31.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Algorithms and Numerical Methods for Optimization with Partial Differential Equation Constraints
偏微分方程约束优化的算法和数值方法
- 批准号:
2110263 - 财政年份:2021
- 资助金额:
$ 31.7万 - 项目类别:
Standard Grant