Hyperdiscriminants and Canonical Kahler metrics on algebraic manifolds
代数流形上的超判别式和规范卡勒度量
基本信息
- 批准号:1104448
- 负责人:
- 金额:$ 15.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-06-01 至 2014-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the main problems in complex geometric analysis is to detect the existence of "canonical" Kahler metrics in a given class on a compact complex (Kahler) manifold. In particular one seeks necessary and sufficient conditions for the existence of a Kahler Einstein metric on a Fano manifold. The presence of positive curvature makes this extremely difficult to answer and has led to a striking series of conjectures which relate the existence of these special metrics (solutions to the complex Monge-Ampere equation, a fully non-linear p.d.e ) to the algebraic geometry of the pluri-anticanonical images of the manifold. This geometry was suspected to be related to Mumford's deep "Geometric Invariant Theory". Recently this speculation has been completely justified by the PI (building upon work of Gang Tian) and it is the aim of this proposal to finish the proof of the "standard conjectures" in the Fano case and to develop and extend the entire Theory in the context of representations of algebraic groups. Here the PI hopes to make contact with Mikio Sato's beautiful theory of prehomogeneous vector spaces.Broadly speaking, there are two ways to mathematically approach, or model, a given problem: continuously, or discretely. These approaches are traditionally mutually exclusive. Analysis (differential equations in particular) is the time honored subject in the continuous domain, combinatorics and algebra (the study of enumerating a finite amount of data) is the hallmark of the discrete approach. In this proposal these two methods come together-the PI will explore the question of how the solution to an equation from analysis might be obtained by an infinite sequence of a purely finite (but large) collection of data. The equation arose in Einsteins' theory of Gravitation, whereas the finite set of data (hyperdiscriminants and resultants) arose in the work of Arthur Cayley a great Victorian era English mathematician.
复几何分析中的一个主要问题是在紧致复(Kahler)流形上检测给定类中“典范”Kahler度量的存在性。特别是一个寻求的必要和充分条件存在的卡勒爱因斯坦度量的法诺流形。正曲率的存在使得这个问题非常难以回答,并导致了一系列引人注目的成果,这些成果将这些特殊度量(复杂的蒙格-安培方程的解,一个完全非线性的p.d.e)的存在与流形的多反正则像的代数几何联系起来。这种几何被怀疑与芒福德的深刻的“几何不变理论”有关。最近这种猜测已完全合理的PI(建设工作的田刚),这是目的,这一建议,以完成证明的“标准结构”在法诺的情况下,并发展和扩大整个理论的背景下表示的代数群。在这里,PI希望与佐藤干雄(Mikio Sato)的漂亮的预齐次向量空间理论进行接触。广义地说,有两种方法可以在数学上接近或建模给定的问题:连续或离散。 这些方法传统上是相互排斥的。分析(特别是微分方程)是连续域中历史悠久的主题,组合学和代数(枚举有限数量数据的研究)是离散方法的标志。在这个提议中,这两种方法结合在一起-PI将探索如何通过纯粹有限(但大)数据集合的无限序列获得分析方程的解的问题。该方程出现在爱因斯坦的引力理论,而有限的数据集(超判别式和结果)出现在工作的亚瑟凯莱一个伟大的维多利亚时代的英国数学家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sean Paul其他文献
Treatment of refractory substance-induced psychosis in adolescent males with a genetic predisposition to mental illness
具有精神疾病遗传倾向的青少年男性难治性物质诱发的精神病的治疗
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Mariam Rahmani;Sean Paul;M. Nguyen - 通讯作者:
M. Nguyen
Polymer leachates emulate naturally derived fluorescent dissolved organic matter: Understanding and managing sample container interferences
- DOI:
10.1016/j.watres.2021.117614 - 发表时间:
2021-10-01 - 期刊:
- 影响因子:
- 作者:
Anthony Agostino;Narasinga Rao Hanumanth Rao;Sean Paul;Zijun Zhang;Greg Leslie;Pierre Le-Clech;Rita Henderson - 通讯作者:
Rita Henderson
Sean Paul的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sean Paul', 18)}}的其他基金
Applications of the Ricci Flow in Differential Geometry
里奇流在微分几何中的应用
- 批准号:
1510401 - 财政年份:2015
- 资助金额:
$ 15.37万 - 项目类别:
Standard Grant
K-Energy Maps and the Stability of Pairs
K 能量图和对的稳定性
- 批准号:
1405972 - 财政年份:2014
- 资助金额:
$ 15.37万 - 项目类别:
Standard Grant
Geometric analysis of Chow Mumford Stability
Chow Mumford 稳定性的几何分析
- 批准号:
0102067 - 财政年份:2001
- 资助金额:
$ 15.37万 - 项目类别:
Fellowship Award
相似国自然基金
非经典BAF(non-canonical BAF,ncBAF)复合物在小鼠胚胎干细胞中功能及其分子机理的研究
- 批准号:32170797
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
Hall代数与canonical基
- 批准号:19971060
- 批准年份:1999
- 资助金额:17.0 万元
- 项目类别:面上项目
相似海外基金
Canonical Kahler metrics and complex Monge-Ampere equations
规范卡勒度量和复杂的 Monge-Ampere 方程
- 批准号:
2303508 - 财政年份:2023
- 资助金额:
$ 15.37万 - 项目类别:
Standard Grant
Research on the relationship between canonical metrics and deformations of complex structures on compact Kahler manifolds
紧卡勒流形上复杂结构正则度量与变形关系研究
- 批准号:
22K03316 - 财政年份:2022
- 资助金额:
$ 15.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric Flows and Canonical Kahler Metrics
几何流和规范卡勒度量
- 批准号:
1945869 - 财政年份:2019
- 资助金额:
$ 15.37万 - 项目类别:
Standard Grant
Canonical Kahler metrics for Fano manifolds with non-vanishing Futaki invariant
具有非消失 Futaki 不变量的 Fano 流形的规范 Kahler 度量
- 批准号:
19J01482 - 财政年份:2019
- 资助金额:
$ 15.37万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Canonical Kahler metrics and Moduli spaces
规范卡勒度量和模空间
- 批准号:
18K13389 - 财政年份:2018
- 资助金额:
$ 15.37万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Geometric Flows and Canonical Kahler Metrics
几何流和规范卡勒度量
- 批准号:
1710500 - 财政年份:2017
- 资助金额:
$ 15.37万 - 项目类别:
Standard Grant
Canonical Metrics, the Kahler-Ricci Flow, and Their Applica1ons
规范度量、Kahler-Ricci 流及其应用
- 批准号:
1711439 - 财政年份:2017
- 资助金额:
$ 15.37万 - 项目类别:
Standard Grant
Canonical metrics on Kahler and Riemannian manifolds and their moduli
卡勒和黎曼流形及其模的规范度量
- 批准号:
1609335 - 财政年份:2016
- 资助金额:
$ 15.37万 - 项目类别:
Continuing Grant
Kahler geometry and canonical metrics
卡勒几何和规范度量
- 批准号:
1306298 - 财政年份:2013
- 资助金额:
$ 15.37万 - 项目类别:
Standard Grant
Canonical metrics on Kahler manifolds and Monge-Ampere equations
卡勒流形和 Monge-Ampere 方程的规范度量
- 批准号:
DE120101167 - 财政年份:2012
- 资助金额:
$ 15.37万 - 项目类别:
Discovery Early Career Researcher Award














{{item.name}}会员




