Random Holomorphic Sections and Complex Geometry

随机全纯截面和复杂几何

基本信息

  • 批准号:
    1201372
  • 负责人:
  • 金额:
    $ 27.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-06-01 至 2016-05-31
  • 项目状态:
    已结题

项目摘要

The principal focus of the project is the interplay between complex geometry and probability. In particular, Bernard Shiffman will continue his research on applications of pluripotential theory and the Bergman-Szego kernel to the statistics of random functions of several complex variables and more generally of random sections of positive line bundles on compact complex manifolds. One of the goals of the research is to refine our understanding of the distributions of zeros and critical points of polynomials, holomorphic sections of ample line bundles, and entire functions. A fundamental ingredient in the study of random sections is the Bergman-Szego kernel, and this project involves using curvature invariants to describe the off-diagonal asymptotics of this kernel for large powers of the line bundle. Shiffman will apply the off-diagonal Bergman kernel asymptotics to obtain optimal sup-norms for orthonormal bases of spaces of holomorphic sections of powers of ample line bundles. He will also continue his investigation of the distribution of random zeros of systems of polynomials, or more generally random sections, in order to obtain central limit theorems for the numbers of zeros in smooth domains as the degree increases. He will investigate the zeros of random polynomials of increasing degree containing a fixed number of monomial terms. Shiffman will also study point processes given by critical points of random holomorphic sections.In the physical sciences it is often necessary to handle disorder, where a certain amount of randomness is inserted into a system. Random functions can be used to model many systems, such as systems of atoms and molecules and their component particles--protons, neutrons, and electrons. Quantum mechanics describes these particles by wave functions, which are solutions of Schrodinger's equation. The zeros and local maxima of wave functions give important information on states of atoms and molecules; the zeros are known in quantum chemistry and physics as nodal lines. Polynomials in several variables can be used to study systems with several degrees of freedom, and those polynomials of high degree correspond to wave functions for high energy states. The mathematics of point processes--the spatial and/or time distribution of random occurrences--has been used in many diverse fields such as signal and image processing, quantum mechanics, epidemiology, seismology, astronomy, and economics. This mathematics research project includes the development of geometric methods to study the statistics of point processes arising from mathematical equations with some random input.
该项目的主要重点是复杂几何和概率之间的相互作用。 特别是,伯纳德Shiffman将继续他的研究应用pluripotential理论和伯格曼,Szego内核的统计随机函数的几个复杂的变量和更普遍的随机部分的积极线丛紧凑复杂的流形。 研究的目标之一是完善我们对多项式的零点和临界点的分布,充分线丛的全纯截面和整函数的理解。 随机截面研究中的一个基本组成部分是Bergman-Szego核,这个项目涉及使用曲率不变量来描述这个核的非对角渐近性。 Shiffman将应用非对角Bergman核渐近性来获得充足线丛的幂的全纯截面的空间的正交基的最优次范数。 他还将继续他的调查随机零点的系统的多项式,或更普遍的随机部分,以获得中央极限定理的数量零光滑域的程度增加。 他将调查零随机多项式的增加程度包含一个固定数目的单项条款。 Shiffman还将研究点过程的临界点随机全纯部分。在物理科学中,它往往是必要的处理混乱,其中一定数量的随机性插入到一个系统。 随机函数可以用来模拟许多系统,如原子和分子及其组成粒子-质子,中子和电子的系统。 量子力学通过波函数描述这些粒子,波函数是薛定谔方程的解。 波函数的零点和局部极大值给出了原子和分子状态的重要信息;零点在量子化学和物理学中被称为节线。 多元多项式可用于研究多自由度系统,而高次多项式对应于高能态的波函数。 点过程的数学-随机事件的空间和/或时间分布-已被用于许多不同的领域,如信号和图像处理,量子力学,流行病学,地震学,天文学和经济学。这个数学研究项目包括几何方法的发展,以研究从数学方程产生的点过程的统计与一些随机输入。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bernard Shiffman其他文献

Critical Points and Supersymmetric Vacua, III: String/M Models
  • DOI:
    10.1007/s00220-006-0003-7
  • 发表时间:
    2006-05-23
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Michael R. Douglas;Bernard Shiffman;Steve Zelditch
  • 通讯作者:
    Steve Zelditch
Correlations Between Zeros and Supersymmetry
  • DOI:
    10.1007/s002200100512
  • 发表时间:
    2014-01-25
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Pavel Bleher;Bernard Shiffman;Steve Zelditch
  • 通讯作者:
    Steve Zelditch
Новые примеры поверхностей в $\mathbb{CP}^3$, гиперболических по Кобаяши@@@New Examples of Kobayashi Hyperbolic Surfaces in $\mathbb{CP}^3$
$mathbb{CP}^3$ 中小林双曲曲面的新示例
  • DOI:
    10.4213/faa35
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Михаил Григорьевич Зайденберг;Mikhail Zaidenberg;Б. Шиффман;Bernard Shiffman
  • 通讯作者:
    Bernard Shiffman
Cohomology and splitting of Hermitian-Einstein vector bundles
  • DOI:
    10.1007/bf01446589
  • 发表时间:
    1991-03-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Bernard Shiffman
  • 通讯作者:
    Bernard Shiffman
Extension of holomorphic maps into hermitian manifolds
  • DOI:
    10.1007/bf01350128
  • 发表时间:
    1971-12-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Bernard Shiffman
  • 通讯作者:
    Bernard Shiffman

Bernard Shiffman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bernard Shiffman', 18)}}的其他基金

Random Holomorphic Sections and Complex Geometry
随机全纯截面和复杂几何
  • 批准号:
    0901333
  • 财政年份:
    2009
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Continuing Grant
Workshop on Geometry of Holomorphic and Algebraic Curves in Complex Algebraic Varieties
复代数簇中的全纯和代数曲线几何研讨会
  • 批准号:
    0717981
  • 财政年份:
    2007
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Standard Grant
Random Holomorphic Sections and Complex Geometry
随机全纯截面和复杂几何
  • 批准号:
    0600982
  • 财政年份:
    2006
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Continuing Grant
Random Holomorphic Sections and Complex Geometry
随机全纯截面和复杂几何
  • 批准号:
    0100474
  • 财政年份:
    2001
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Continuing Grant
Complex Manifolds and Meromorphic Mappings
复杂流形和亚纯映射
  • 批准号:
    9800479
  • 财政年份:
    1998
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Continuing Grant
U.S.-Japan Cooperative Science: Meromorphic Mappings and Intrinsic Metrics in Complex Geometry
美日合作科学:复杂几何中的亚纯映射和本征度量
  • 批准号:
    9613653
  • 财政年份:
    1997
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Complex Manifolds and Meromorphic Mappings
数学科学:复流形和亚纯映射
  • 批准号:
    9500491
  • 财政年份:
    1995
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Complex Manifolds and Meromorphic Mappings
数学科学:复流形和亚纯映射
  • 批准号:
    9204037
  • 财政年份:
    1992
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Conference on Algebraic and Complex Geometry; to be held April 4-7, 1991 at Johns Hopkins University
数学科学:代数和复几何会议;
  • 批准号:
    9023621
  • 财政年份:
    1991
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Complex Manifolds and Meromorphic Mappings
数学科学:复流形和亚纯映射
  • 批准号:
    9001365
  • 财政年份:
    1990
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Continuing Grant

相似国自然基金

Skew-holomorphic Jacobi形式的算术
  • 批准号:
    10726030
  • 批准年份:
    2007
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

HOLOMORPHIC DYNAMICS AND RELATED THEMES
全态动力学及相关主题
  • 批准号:
    2247613
  • 财政年份:
    2023
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Standard Grant
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
  • 批准号:
    2109949
  • 财政年份:
    2023
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Standard Grant
Research on holomorphic mappings of Riemann surfaces --- Geometry of spaces of continuations of Riemann surfaces and applications
黎曼曲面全纯映射研究——黎曼曲面延拓空间的几何及应用
  • 批准号:
    22K03356
  • 财政年份:
    2022
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Explicit Methods for non-holomorphic Hilbert Modular Forms
非全纯希尔伯特模形式的显式方法
  • 批准号:
    EP/V026321/1
  • 财政年份:
    2022
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Research Grant
CAREER: Symplectic and Holomorphic Convexity in 4-dimensions
职业:4 维辛凸性和全纯凸性
  • 批准号:
    2144363
  • 财政年份:
    2022
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Continuing Grant
Geometry and Dynamics of Holomorphic Geometric Structures
全纯几何结构的几何与动力学
  • 批准号:
    2203358
  • 财政年份:
    2022
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Continuing Grant
Holomorphic maps between Riemann surfaces
黎曼曲面之间的全纯映射
  • 批准号:
    21K03287
  • 财政年份:
    2021
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Heegaard Diagrams and Holomorphic Disks
Heegaard 图和全纯圆盘
  • 批准号:
    2104536
  • 财政年份:
    2021
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Continuing Grant
Geometry and Topology of Holomorphic Symplectic Varieties
全纯辛簇的几何和拓扑
  • 批准号:
    2134315
  • 财政年份:
    2021
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Standard Grant
Research on uniform construction and automorphism groups of holomorphic vertex operator algebras of central charge 24
中心电荷全纯顶点算子代数的一致构造和自同构群研究 24
  • 批准号:
    20K03505
  • 财政年份:
    2020
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了