Random Holomorphic Sections and Complex Geometry
随机全纯截面和复杂几何
基本信息
- 批准号:1201372
- 负责人:
- 金额:$ 27.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-06-01 至 2016-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal focus of the project is the interplay between complex geometry and probability. In particular, Bernard Shiffman will continue his research on applications of pluripotential theory and the Bergman-Szego kernel to the statistics of random functions of several complex variables and more generally of random sections of positive line bundles on compact complex manifolds. One of the goals of the research is to refine our understanding of the distributions of zeros and critical points of polynomials, holomorphic sections of ample line bundles, and entire functions. A fundamental ingredient in the study of random sections is the Bergman-Szego kernel, and this project involves using curvature invariants to describe the off-diagonal asymptotics of this kernel for large powers of the line bundle. Shiffman will apply the off-diagonal Bergman kernel asymptotics to obtain optimal sup-norms for orthonormal bases of spaces of holomorphic sections of powers of ample line bundles. He will also continue his investigation of the distribution of random zeros of systems of polynomials, or more generally random sections, in order to obtain central limit theorems for the numbers of zeros in smooth domains as the degree increases. He will investigate the zeros of random polynomials of increasing degree containing a fixed number of monomial terms. Shiffman will also study point processes given by critical points of random holomorphic sections.In the physical sciences it is often necessary to handle disorder, where a certain amount of randomness is inserted into a system. Random functions can be used to model many systems, such as systems of atoms and molecules and their component particles--protons, neutrons, and electrons. Quantum mechanics describes these particles by wave functions, which are solutions of Schrodinger's equation. The zeros and local maxima of wave functions give important information on states of atoms and molecules; the zeros are known in quantum chemistry and physics as nodal lines. Polynomials in several variables can be used to study systems with several degrees of freedom, and those polynomials of high degree correspond to wave functions for high energy states. The mathematics of point processes--the spatial and/or time distribution of random occurrences--has been used in many diverse fields such as signal and image processing, quantum mechanics, epidemiology, seismology, astronomy, and economics. This mathematics research project includes the development of geometric methods to study the statistics of point processes arising from mathematical equations with some random input.
该项目的主要关注点是复杂几何和概率之间的相互作用。特别是,Bernard Shiffman将继续他的研究,将多势理论和Bergman-Szego核应用于几个复变量的随机函数的统计,以及更一般的紧致复流形上正线丛的随机截面的统计。这项研究的目的之一是加深我们对多项式的零点和临界点的分布、充分线丛的全纯截面和整函数的理解。研究随机截面的一个基本成分是Bergman-Szego核,这个项目涉及到使用曲率不变量来描述该核对于线丛的幂的非对角渐近。Shiffman将应用非对角线Bergman核的渐近性,得到全纯全纯截面空间的最优超范数。他还将继续研究多项式系统或更一般的随机截面的随机零点的分布,以便获得光滑域中零点个数随着次数的增加的中心极限定理。他将研究包含固定数量的单项式的递增次数随机多项式的零点。希夫曼还将研究由随机全纯截面的临界点给出的点过程。在物理学中,通常需要处理无序,即在系统中插入一定数量的随机性。随机函数可以用来模拟许多系统,例如原子和分子及其组成粒子的系统--质子、中子和电子。量子力学用波函数来描述这些粒子,波函数是薛定谔方程的解。波函数的零点和局部极大值提供了有关原子和分子状态的重要信息;在量子化学和物理学中,零点被称为节线。多元多项式可用于研究具有多个自由度的系统,高次多项式对应于高能态的波函数。点过程的数学--随机事件的空间和/或时间分布--已被用于许多不同的领域,如信号和图像处理、量子力学、流行病学、地震学、天文学和经济学。这个数学研究项目包括发展几何方法来研究由具有一些随机输入的数学方程产生的点过程的统计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bernard Shiffman其他文献
Critical Points and Supersymmetric Vacua, III: String/M Models
- DOI:
10.1007/s00220-006-0003-7 - 发表时间:
2006-05-23 - 期刊:
- 影响因子:2.600
- 作者:
Michael R. Douglas;Bernard Shiffman;Steve Zelditch - 通讯作者:
Steve Zelditch
Correlations Between Zeros and Supersymmetry
- DOI:
10.1007/s002200100512 - 发表时间:
2014-01-25 - 期刊:
- 影响因子:2.600
- 作者:
Pavel Bleher;Bernard Shiffman;Steve Zelditch - 通讯作者:
Steve Zelditch
Новые примеры поверхностей в $\mathbb{CP}^3$, гиперболических по Кобаяши@@@New Examples of Kobayashi Hyperbolic Surfaces in $\mathbb{CP}^3$
$mathbb{CP}^3$ 中小林双曲曲面的新示例
- DOI:
10.4213/faa35 - 发表时间:
2005 - 期刊:
- 影响因子:4.5
- 作者:
Михаил Григорьевич Зайденберг;Mikhail Zaidenberg;Б. Шиффман;Bernard Shiffman - 通讯作者:
Bernard Shiffman
Cohomology and splitting of Hermitian-Einstein vector bundles
- DOI:
10.1007/bf01446589 - 发表时间:
1991-03-01 - 期刊:
- 影响因子:1.400
- 作者:
Bernard Shiffman - 通讯作者:
Bernard Shiffman
Extension of holomorphic maps into hermitian manifolds
- DOI:
10.1007/bf01350128 - 发表时间:
1971-12-01 - 期刊:
- 影响因子:1.400
- 作者:
Bernard Shiffman - 通讯作者:
Bernard Shiffman
Bernard Shiffman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bernard Shiffman', 18)}}的其他基金
Random Holomorphic Sections and Complex Geometry
随机全纯截面和复杂几何
- 批准号:
0901333 - 财政年份:2009
- 资助金额:
$ 27.4万 - 项目类别:
Continuing Grant
Workshop on Geometry of Holomorphic and Algebraic Curves in Complex Algebraic Varieties
复代数簇中的全纯和代数曲线几何研讨会
- 批准号:
0717981 - 财政年份:2007
- 资助金额:
$ 27.4万 - 项目类别:
Standard Grant
Random Holomorphic Sections and Complex Geometry
随机全纯截面和复杂几何
- 批准号:
0600982 - 财政年份:2006
- 资助金额:
$ 27.4万 - 项目类别:
Continuing Grant
Random Holomorphic Sections and Complex Geometry
随机全纯截面和复杂几何
- 批准号:
0100474 - 财政年份:2001
- 资助金额:
$ 27.4万 - 项目类别:
Continuing Grant
Complex Manifolds and Meromorphic Mappings
复杂流形和亚纯映射
- 批准号:
9800479 - 财政年份:1998
- 资助金额:
$ 27.4万 - 项目类别:
Continuing Grant
U.S.-Japan Cooperative Science: Meromorphic Mappings and Intrinsic Metrics in Complex Geometry
美日合作科学:复杂几何中的亚纯映射和本征度量
- 批准号:
9613653 - 财政年份:1997
- 资助金额:
$ 27.4万 - 项目类别:
Standard Grant
Mathematical Sciences: Complex Manifolds and Meromorphic Mappings
数学科学:复流形和亚纯映射
- 批准号:
9500491 - 财政年份:1995
- 资助金额:
$ 27.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Complex Manifolds and Meromorphic Mappings
数学科学:复流形和亚纯映射
- 批准号:
9204037 - 财政年份:1992
- 资助金额:
$ 27.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Conference on Algebraic and Complex Geometry; to be held April 4-7, 1991 at Johns Hopkins University
数学科学:代数和复几何会议;
- 批准号:
9023621 - 财政年份:1991
- 资助金额:
$ 27.4万 - 项目类别:
Standard Grant
Mathematical Sciences: Complex Manifolds and Meromorphic Mappings
数学科学:复流形和亚纯映射
- 批准号:
9001365 - 财政年份:1990
- 资助金额:
$ 27.4万 - 项目类别:
Continuing Grant
相似国自然基金
Skew-holomorphic Jacobi形式的算术
- 批准号:10726030
- 批准年份:2007
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
HOLOMORPHIC DYNAMICS AND RELATED THEMES
全态动力学及相关主题
- 批准号:
2247613 - 财政年份:2023
- 资助金额:
$ 27.4万 - 项目类别:
Standard Grant
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
- 批准号:
2109949 - 财政年份:2023
- 资助金额:
$ 27.4万 - 项目类别:
Standard Grant
Explicit Methods for non-holomorphic Hilbert Modular Forms
非全纯希尔伯特模形式的显式方法
- 批准号:
EP/V026321/1 - 财政年份:2022
- 资助金额:
$ 27.4万 - 项目类别:
Research Grant
Research on holomorphic mappings of Riemann surfaces --- Geometry of spaces of continuations of Riemann surfaces and applications
黎曼曲面全纯映射研究——黎曼曲面延拓空间的几何及应用
- 批准号:
22K03356 - 财政年份:2022
- 资助金额:
$ 27.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Symplectic and Holomorphic Convexity in 4-dimensions
职业:4 维辛凸性和全纯凸性
- 批准号:
2144363 - 财政年份:2022
- 资助金额:
$ 27.4万 - 项目类别:
Continuing Grant
Geometry and Dynamics of Holomorphic Geometric Structures
全纯几何结构的几何与动力学
- 批准号:
2203358 - 财政年份:2022
- 资助金额:
$ 27.4万 - 项目类别:
Continuing Grant
Holomorphic maps between Riemann surfaces
黎曼曲面之间的全纯映射
- 批准号:
21K03287 - 财政年份:2021
- 资助金额:
$ 27.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Heegaard Diagrams and Holomorphic Disks
Heegaard 图和全纯圆盘
- 批准号:
2104536 - 财政年份:2021
- 资助金额:
$ 27.4万 - 项目类别:
Continuing Grant
Geometry and Topology of Holomorphic Symplectic Varieties
全纯辛簇的几何和拓扑
- 批准号:
2134315 - 财政年份:2021
- 资助金额:
$ 27.4万 - 项目类别:
Standard Grant
Research on uniform construction and automorphism groups of holomorphic vertex operator algebras of central charge 24
中心电荷全纯顶点算子代数的一致构造和自同构群研究 24
- 批准号:
20K03505 - 财政年份:2020
- 资助金额:
$ 27.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




