AIR Option 1: Tech Translation - Ultrananocrystalline Diamond Coating Tech for Integrated Electrode-Membrane-Inner Wall Case Coating for Long Life Commercial Li-Sulfur Battery

AIR选项1:技术翻译-用于长寿命商用锂硫电池的集成电极-膜-内壁外壳涂层的超纳米晶金刚石涂层技术

基本信息

  • 批准号:
    1343461
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-10-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

This PFI: AIR Technology Translation project focuses on translating the science and technology of unique multifunctional ultrananocrystalline diamond (UNCD) film (coating) technology into superior energy storage cells and solutions that fill the performance, life-cycle, and production readiness gap evident in conventional battery applications. The collective goal is to produce a commercially viable path to the next generation of Li-ion batteries (LIB) and a new generation of thermal Li-Sulfur (TLS) batteries. The translated science and technology of UNCD-based LIB and TLS have the following unique features: i) high performance anodes based on electrically conductive UNCD-coated metal anodes to increase the battery lifetime by at least 10x with respect to current technologies, ii) UNCD-based membranes for Li+ ions transport with at least 10x higher resistance to battery environmental and chemical attacks than for current batteries, and iii) UNCD films as extremely chemically resistant coatings for the battery inner walls case to substantially lower the cost, extend cells' life-cycle, and improve the economic viability of the end product. Currently, much more expensive metals would be required to survive the targeted x10 longer life time (given exposure to the harsh environment of the LIB and TLS batteries). This PFI AIR project intends to deliver a TLS battery that has a potential volumetric energy density of 2,600 Wh/l with a theoretical specific energy density of 2,500 Wh/kg, which is at least x10 superior performance to current battery technologies. The state-of-the-art for cathodes and anodes (two critical components) for this couple currently features a theoretical volumetric energy density of 2,125 Wh/l and a theoretical specific energy density of 597 Wh/kg. The resulting TLS approach will provide 22% improvement in volumetric energy density and ~400% improvement in specific energy density over existing secondary LIB technologies, when compared to the leading competing LIB science/technology from manufacturers in this market space. The project accomplishes its objectives by developing: i) boron-doped UNCD (B-UNCD) and nitrogen-grain boundary incorporated (N-UNCD) coated metallic electrodes (e.g, tungsten (W), titanium (Ti), or W-coated Cu) to determine which is the best anode material to insert in the new generation of LIB and TLS batteries, ii) the best approach between a patented chemical etching processes from Advanced Diamond Technologies (ADT) and UNCD-coated Si-based or anodic aluminum oxide (AAO) membranes used as templates to produce 10x more chemically robust UNCD-based membranes than current battery membranes, and iii) chemically resistant UNCD coating for the inner walls of the battery metal case to make it possible to use a less expensive metal material as opposed to currently used molybdenum that is both expensive and chemically less resistant. A prototype coin-type battery will be demonstrated as a proof-of-concept of the novel UNCD-based LIB and TLS battery technologies for defibrillators/pacemakers, cell phones, and computers. The new UNCD-based battery technology will be scalable to produce larger batteries for larger systems such as car batteries. The partnership engages researchers from the University of Texas at Dallas (Materials Science and Engineering Department), who will provide N-UNCD coatings for the battery anodes and UNCD-coated membranes based on the Si and AAO templates. The industrial and commercialization partner is Advanced Diamond Technologies (ADT), a company currently expanding the commercial application of thin smooth diamond. ADT will provide the expertise for developing the B-UNCD films as alternative electrically conductive coatings for battery anodes, as described above. In addition, ADT will provide expertise on customer identification, engagement and commercialization, as well as manage production of the diamond coated battery components (pre-integration) and public introduction of the first LIB/TLS batteries in the market. The infrastructure is already in place in ADT facilities to translate the UNCD coating science/technology along a path that will result in a competitive commercial reality for a new generation of LIB and TLS batteries with potentially 10x better performance than current batteries. The potential economic impact includes domestic production of high energy density cells expected to become viable in the next five years, and will re-engage the US as a competitive fixture in the batteries market space with key, targeted market segments in medical devices/systems, mobile communication devices, computers and many other systems requiring long life low cost batteries. The societal impact, long term, will be in the form of i) at least 10x smaller/longer life for medical implants (i.e., defibrillators/pacemakers), which will impact positively the quality of life of people requiring these devices, and ii) longer life/smaller batteries to power more efficient cell phones, portable computers, and other electronic devices.
该PFI:AIR技术转化项目专注于将独特的多功能超纳米金刚石(UNCD)薄膜(涂层)技术转化为上级储能电池和解决方案,填补传统电池应用中明显的性能、生命周期和生产准备缺口。共同的目标是为下一代锂离子电池(LIB)和新一代热锂硫(TLS)电池提供商业上可行的途径。 UNCCD的LIB和TLS的翻译科学和技术具有以下独特的特点:ii)用于Li+离子传输的基于UNCD的膜,其对电池环境和化学侵蚀的抗性比现有电池高至少10倍,和iii)UNCD膜作为用于电池内壁壳的极耐化学性涂层,以显著降低成本、延长电池的寿命周期并提高最终产品的经济可行性。目前,需要更昂贵的金属才能在目标x10更长的寿命中生存(考虑到LIB和TLS电池的恶劣环境)。该PFI AIR项目旨在提供一种TLS电池,其潜在体积能量密度为2,600 Wh/l,理论比能量密度为2,500 Wh/kg,这比当前电池技术的性能至少高出10倍上级。目前,这对阴极和阳极(两个关键部件)的最新技术水平具有2,125 Wh/l的理论体积能量密度和597 Wh/kg的理论比能量密度。与该市场领域制造商的领先竞争LIB科学/技术相比,所产生的TLS方法将在体积能量密度方面提供22%的改进,在比能量密度方面提供约400%的改进。 该项目通过发展以下方面来实现其目标:i)硼掺杂的UNCD(B-UNCD)和氮-晶界结合的(N-UNCD)涂覆的金属电极(例如,钨(W)、钛(Ti)或W涂覆的Cu)以确定哪种是插入新一代LIB和TLS电池中的最佳阳极材料,ii)先进金刚石技术公司(ADT)的专利化学蚀刻工艺和UNCD涂层硅基或阳极氧化铝(AAO)之间的最佳方法膜用作模板,以产生比当前电池膜高10倍的化学稳定性的UNCD基膜,以及iii)电池金属壳内壁的耐化学性UNCD涂层,使其可以使用更便宜的金属材料,而不是目前使用的钼,既昂贵又不耐化学腐蚀。原型硬币型电池将被证明为基于UNCD的新型LIB和TLS电池技术的概念验证,用于起搏器/起搏器,手机和计算机。新的基于UNCD的电池技术将可扩展,为汽车电池等大型系统生产更大的电池。该合作伙伴关系吸引了德克萨斯大学达拉斯分校(材料科学与工程系)的研究人员,他们将为电池阳极提供N-UNCD涂层,并基于Si和AAO模板提供UNCD涂层膜。工业和商业化合作伙伴是Advanced Diamond Technologies(ADT),该公司目前正在扩大薄光滑金刚石的商业应用。ADT将提供专门知识,开发B-UNCD薄膜,作为电池阳极的替代导电涂层,如上所述。此外,ADT还将提供客户识别、参与和商业化方面的专业知识,并管理金刚石涂层电池组件的生产(预集成),以及在市场上公开推出首批LIB/TLS电池。ADT设施中的基础设施已经到位,以将UNCD涂层科学/技术沿着一条道路转化,这将为新一代LIB和TLS电池带来具有竞争力的商业现实,其性能可能比现有电池高10倍。 潜在的经济影响包括国内生产的高能量密度电池,预计将成为可行的,在未来五年内,并将重新参与美国作为一个有竞争力的夹具在电池市场空间的关键,有针对性的细分市场,医疗设备/系统,移动的通信设备,计算机和许多其他系统需要长寿命低成本电池。 长期的社会影响将表现为:i)医疗植入物的寿命至少缩短/延长10倍(即,起搏器/心脏起搏器),这将对需要这些设备的人的生活质量产生积极影响,以及ii)更长的寿命/更小的电池,为更高效的手机、便携式计算机和其他电子设备供电。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yves Chabal其他文献

Yves Chabal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yves Chabal', 18)}}的其他基金

Materials World Network, SusChEM: Control of Interfacial Chemistry in Reactive Nanolaminates (CIREN)
材料世界网络,SusChEM:反应性纳米层压材料中界面化学的控制(CIREN)
  • 批准号:
    1312525
  • 财政年份:
    2013
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Role of structure in chemical functionalization of oxide-free silicon surfaces and nanoparticles
结构在无氧化物硅表面和纳米粒子化学功能化中的作用
  • 批准号:
    1300180
  • 财政年份:
    2013
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Surface Chemical Functionalization of Semiconductors and Nanostructures
半导体和纳米结构的表面化学功能化
  • 批准号:
    0911197
  • 财政年份:
    2009
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Surface Chemical Functionalization of Technologically Important Semiconductors: Silicon, Germanium, and Silicon Carbide
具有重要技术意义的半导体的表面化学功能化:硅、锗和碳化硅
  • 批准号:
    0827634
  • 财政年份:
    2008
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
MRI: Development of an Integrated Thin Film Growth System with Comprehensive In-situ Characterization for Research and Education
MRI:开发具有综合原位表征的集成薄膜生长系统,用于研究和教育
  • 批准号:
    0421028
  • 财政年份:
    2004
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Surface Chemical Functionalization of Technologically Important Semiconductors: Silicon, Germanium, and Silicon Carbide
具有重要技术意义的半导体的表面化学功能化:硅、锗和碳化硅
  • 批准号:
    0415652
  • 财政年份:
    2004
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
US-France Cooperative Research: Molecule/Surface Interaction and the Formation of Ultra-Thin Layers During High-k Dielectric Growth on Silicon
美法合作研究:硅上高 k 电介质生长过程中的分子/表面相互作用和超薄层的形成
  • 批准号:
    0341053
  • 财政年份:
    2004
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

Vessel co-option介导贝伐单抗治疗结直肠癌肝转移耐药的机制及克服策略研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

Multi-layered decoding and therapeutic co-option of the metastatic checkpoint in human colorectal cancer
人类结直肠癌转移检查点的多层解码和治疗选择
  • 批准号:
    23K27677
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Market Sentiment Indicator Analysis - Option Greeks
市场情绪指标分析 - 希腊期权
  • 批准号:
    2891454
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Studentship
Evaluation of adeno-associated viral (AAV) mediated gene replacement therapy as a therapeutic option for SLC25A4 deficiency
评估腺相关病毒 (AAV) 介导的基因替代疗法作为 SLC25A4 缺陷的治疗选择
  • 批准号:
    10606065
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
oPTion-DDR: A randomized phase III trial investigating Platinum and Taxane chemotherapy in metastatic castration resistant prostate cancer patients with alterations in DNA Damage Response (DDR) genes
oPTion-DDR:一项随机 III 期试验,研究铂类和紫杉烷化疗对 DNA 损伤反应 (DDR) 基因改变的转移性去势抵抗性前列腺癌患者的影响
  • 批准号:
    477946
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Operating Grants
CPS: TTP Option: Small: Consistency vs. Availability in Cyber-Physical Systems
CPS:TTP 选项:小:网络物理系统中的一致性与可用性
  • 批准号:
    2233769
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Splenic Modulation of SHP-2 Activity as a Therapeutic Option for Systemic Lupus Erythematosus
脾脏调节 SHP-2 活性作为系统性红斑狼疮的治疗选择
  • 批准号:
    10668102
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
Image-based Systems Biology of Vascular Co-option in Brain Tumors
脑肿瘤血管选择的基于图像的系统生物学
  • 批准号:
    10681077
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
PURPOSE OF THIS MODIFICATION IS TO EXERCISE THE I-CORP OPTION
此修改的目的是行使 I-CORP 选择权
  • 批准号:
    10933806
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
THE PURPOSE OF THIS MODIFICATION IS TO EXERCISE THE I-CORP OPTION
此修改的目的是行使 I-CORP 选择权
  • 批准号:
    10933819
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
Developing broad-spectrum antivirals as a rapid response option for future global epidemics
开发广谱抗病毒药物作为未来全球流行病的快速应对选择
  • 批准号:
    EP/W024497/2
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了