EAGER: Silicon-compatible, Crystallographic Oriented Epitaxial Germanium for New Generation of Metal-oxide Semiconductor Field-effect Transistors

EAGER:用于新一代金属氧化物半导体场效应晶体管的硅兼容、晶体取向外延锗

基本信息

项目摘要

Objectives: The objectives of this research program is design, materials synthesis and device based co-exploration of lattice-engineered, crystallographic oriented epitaxial (100), (110) and (111) germanium (Ge) based transistors using large bandgap barrier materials. The approach is a) experimental investigation of p-channel (110)Ge and n-channel (111)Ge quantum well transistors, b) experimental investigation of high hole mobility using (110)Ge and high electron mobility using (111)Ge surface orientation, and c) silicon compatible process flow of biaxially strained Ge transistors. Intellectual merit: The key scientific merits of this proposal are: i) in-situ growth of Ge transistor structure; ii) tailor-made surface orientations of Ge enable to achieve both high-hole and high-electron mobilities; iii) biaxially strained Ge quantum well transistor using large bandgap materials to enhance hole mobility, iv) larger valence band-offsets for carrier confinement and prevents carrier spill-off, v) elimination of parallel conduction, and vi) enhancement mode transistor operation. Our approaches are most innovative and transformative of in-situ grown epitaxial surface oriented Ge with large bandgap buffers that has a capacity to bring new technologies.Broader Impact: The proposed Ge research seeks to increase the speed of transistor and substantially reduce power consumption in integrated circuits. Ultra-low power and high-speed computation will benefit applications for industrial, medical, commercial and personal use. The proposed research is interdisciplinary in nature. Through collaboration with industry, we envision direct transfer of device prototypes, to open new avenues for commercialization. The project will train graduate and undergraduate students in the area of nano-scale material science, device physics, and semiconductor fabrication
目的:该研究计划的目标是设计,材料合成和基于器件的晶格工程,晶体取向外延(100),(110)和(111)锗(Ge)基晶体管使用大带隙势垒材料的共同探索。该方法是a)p沟道(110)Ge和n沟道(111)Ge量子阱晶体管的实验研究,B)使用(110)Ge的高空穴迁移率和使用(111)Ge表面取向的高电子迁移率的实验研究,以及c)双轴应变Ge晶体管的硅兼容工艺流程。 智力优点:该方案的主要科学价值是:i)原位生长Ge晶体管结构; ii)定制Ge的表面取向使得能够实现高空穴和高电子迁移率; iii)使用大带隙材料以增强空穴迁移率双轴应变Ge量子阱晶体管,iv)用于载流子限制的较大价带偏移并防止载流子溢出,v)消除并联传导,以及vi)增强模式晶体管操作。我们的方法是最具创新性和变革性的原位生长外延表面取向的锗与大带隙缓冲区,有能力带来新technology.Broader影响:拟议的锗研究旨在提高晶体管的速度,并大大降低集成电路的功耗。超低功耗和高速计算将有利于工业,医疗,商业和个人使用的应用。拟议的研究是跨学科的性质。通过与行业合作,我们设想直接转让设备原型,为商业化开辟新途径。该项目将培养纳米材料科学、器件物理和半导体制造领域的研究生和本科生

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mantu Hudait其他文献

Gate length scaling study of InAlAs/InGaAs/InAsP composite channel HEMTs
  • DOI:
    10.1016/j.sse.2007.04.002
  • 发表时间:
    2007-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dongmin Liu;Mantu Hudait;Yong Lin;Hyeongnam Kim;Steven A. Ringel;Wu Lu
  • 通讯作者:
    Wu Lu

Mantu Hudait的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mantu Hudait', 18)}}的其他基金

US-Ireland Joint R&D Partnership: Strained Engineered Germanium Quantum-Well Laser on GaAs and Si for Optical Coherence Tomography
美国-爱尔兰联合R
  • 批准号:
    2042079
  • 财政年份:
    2021
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: Planning Grant: I/UCRC for Next Generation Nanomaterial and Device Engineering (NGeNE)
合作研究:规划资助:I/UCRC 下一代纳米材料和器件工程 (NGeNE)
  • 批准号:
    1464646
  • 财政年份:
    2015
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
US-Ireland R&D Partnership: Si-compatible, Strain Engineered Staggered Gap Ge(Sn)/InxGa1-xAs Nanoscale Tunnel Field Effect Transistors
美国-爱尔兰 R
  • 批准号:
    1507950
  • 财政年份:
    2015
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative: Mixed Anion and Cation Based Transistor Architecture for Ultra-Low Power Complementary Logic Applications
协作:用于超低功耗互补逻辑应用的混合阴离子和阳离子晶体管架构
  • 批准号:
    1028494
  • 财政年份:
    2010
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant

相似国自然基金

Silicon-Tethered 分子内 Corey-Chaykovsky 反应和 Tandem Heterocyclopropylolefin 环化反应研究
  • 批准号:
    20802044
  • 批准年份:
    2008
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Scalable Three Terminal Memory Devices based on Silicon-Compatible Antiferromagnetic Materials
基于硅兼容反铁磁材料的可扩展三端子存储器件
  • 批准号:
    2203243
  • 财政年份:
    2022
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Towards a Logical Qubit in Silicon: Scalable 2-qubits Operations in CMOS-compatible Quantum Dots
迈向硅中的逻辑量子位:CMOS 兼容量子点中的可扩展 2 量子位操作
  • 批准号:
    2578471
  • 财政年份:
    2021
  • 资助金额:
    $ 28万
  • 项目类别:
    Studentship
A Microfabrication Compatible Method to Fabricate Silicon Nanotubes for Nanoprobe Applications
一种制造用于纳米探针应用的硅纳米管的微加工兼容方法
  • 批准号:
    2031826
  • 财政年份:
    2020
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
PIC: CMOS-compatible, monolithic, and high-performance optical isolators on silicon
PIC:CMOS 兼容、单片、高性能硅光隔离器
  • 批准号:
    2028199
  • 财政年份:
    2020
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Modelling and characterization of Silicon-compatible Optical Amplifiers
硅兼容光放大器的建模和表征
  • 批准号:
    525191-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 28万
  • 项目类别:
    University Undergraduate Student Research Awards
O-Band Monolithic Quantum Dot Semiconductor Optical Amplifier on COMS-Compatible Silicon
COMS 兼容硅上的 O 波段单片量子点半导体光放大器
  • 批准号:
    2097441
  • 财政年份:
    2018
  • 资助金额:
    $ 28万
  • 项目类别:
    Studentship
Silicon-compatible hybrid organic-inorganic shortwave infrared up-conversion device
硅兼容有机-无机杂化短波红外上转换器件
  • 批准号:
    494031-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 28万
  • 项目类别:
    Strategic Projects - Group
Silicon-compatible hybrid organic-inorganic shortwave infrared up-conversion device
硅兼容有机-无机杂化短波红外上转换器件
  • 批准号:
    494031-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 28万
  • 项目类别:
    Strategic Projects - Group
Silicon Compatible CaxBa1-xNb2O6 Thin Film for Energy Efficient Optical Transmitters: A Gateway to Next Generation Green Photonics Technology
用于节能光发射器的硅兼容 CaxBa1-xNb2O6 薄膜:通向下一代绿色光子技术的大门
  • 批准号:
    471200-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 28万
  • 项目类别:
    Postdoctoral Fellowships
Quantum oscillators for cavity electrodynamics in CMOS compatible silicon photonic chips
用于 CMOS 兼容硅光子芯片中腔电动力学的量子振荡器
  • 批准号:
    138676-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 28万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了