UNS: Tunable Plasmonic Nanostructures by Atomic Layer Deposition
UNS:通过原子层沉积可调谐等离子体纳米结构
基本信息
- 批准号:1511138
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-15 至 2020-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1511138(Willis)Plasmonics is a general term that describes a broad array of research activity to study the interaction of light with noble metal nanostructures. Noble metals are metals that are resistant to corrosion and oxidation in moist air. Ruthenium, rhodium, palladium, silver, osmium, iridium, platinum, and gold are noble metals. The field of plasmonics is growing rapidly due an increasing number of studies on the applications of plasmonic materials. These applications are for their uses in photocatalysis, as biochemical sensors, as photodetectors, and for solar energy harvesting, including harvesting infrared (IR) wavelengths.The central features of plasmonic materials are localized surface plasmon resonances that lead to strong absorption and scattering of electromagnetic radiation by small metal particles. An experimental research program to investigate tunable plasmonic nano structures is planned, with an emphasis on process schemes for electrical connectivity. The central features of plasmonic materials are localized surface plasmon resonances that lead to strong absorption and scattering of visible and near-IR radiation by small noble metal particles. The resonances are sensitive to the size and shape of nanostructures as well as the dielectric properties of the materials and surroundings, and can be tuned throughout the visible/near-IR region. The coupling of optical phenomena and charge transfer processes is one of the exciting new areas of the science of plasmonic materials. In this work, the PI plans to investigate atomic layer deposition of noble metals on Pd nanostructures to tune the optical and electrical properties of electrically conductive nanostructures coupled by nanogaps on the order of a few nanometers. Atomic layer deposition will be used to create electrically coupled plasmonic nanostructures that combine optical and electrical phenomena at the nanoscale. This research should enhance the ability to engineer useful structures at the nanoscale with critical dimensions on the order of 1 nm.The broader impacts encompass STEM educational and outreach activities, including building infrastructure for education through new senior laboratory experiments, starting a new graduate student mentoring program, supporting undergraduate research and participation by underrepresented student populations, and hosting high school students and teachers for summer learning activities.
等离子体动力学是一个总称,描述了研究光与贵金属纳米结构相互作用的一系列广泛的研究活动。贵金属是指在潮湿空气中耐腐蚀和抗氧化的金属。钌、铑、钯、银、锇、铱、铂和金是贵金属。由于对等离子体材料应用的研究越来越多,等离子体领域正在迅速发展。这些应用是用于光催化,作为生化传感器,作为光电探测器,以及太阳能收集,包括收集红外(IR)波长。等离子体材料的中心特征是局部表面等离子体共振,导致小金属颗粒对电磁辐射的强吸收和散射。一个实验研究计划来研究可调谐等离子体纳米结构,重点是电连接的工艺方案。等离子体材料的中心特征是局部表面等离子体共振,导致小贵金属粒子对可见光和近红外辐射的强吸收和散射。共振对纳米结构的大小和形状以及材料和周围环境的介电性质都很敏感,并且可以在整个可见光/近红外区域进行调谐。光学现象与电荷转移过程的耦合是等离子体材料科学中令人兴奋的新领域之一。在这项工作中,PI计划研究贵金属在钯纳米结构上的原子层沉积,以调整由纳米间隙耦合的导电纳米结构在几纳米量级上的光学和电学性质。原子层沉积将用于制造电耦合等离子体纳米结构,在纳米尺度上结合光学和电学现象。这项研究将提高在纳米尺度上设计有用结构的能力,其临界尺寸为1nm。更广泛的影响包括STEM教育和推广活动,包括通过新的高级实验室实验建立教育基础设施,启动新的研究生指导计划,支持本科生研究和代表性不足的学生群体的参与,以及举办高中学生和教师的暑期学习活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian Willis其他文献
Brian Willis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian Willis', 18)}}的其他基金
Growth Engineering of Plasmonic Nanostructures with ALD
ALD 等离子纳米结构的生长工程
- 批准号:
2232057 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Nanofabricated Model Systems for Investigations of Plasmon Enhanced Reactions
用于研究等离激元增强反应的纳米制造模型系统
- 批准号:
2150158 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Electro-optical Studies of Nanoscale, Geometrically-Asymmetric Tunnel Junctions for Collection and Rectification of Light from Infrared through Visible
合作研究:纳米级、几何不对称隧道结的光电研究,用于收集和校正红外到可见光
- 批准号:
1231248 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
DNA Sequencing with Nanopores and Transverse Tunneling
利用纳米孔和横向隧道进行 DNA 测序
- 批准号:
1102230 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Tunneling Spectroscopy for Nanofabricated Biochemical Sensors
纳米生化传感器的隧道光谱
- 批准号:
0935009 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Perovskite Buffer Layers for Compound Semiconductor-Silicon Heteroepitaxy
职业:用于化合物半导体-硅异质外延的钙钛矿缓冲层
- 批准号:
0935010 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NER: Engineering the Molecule-Electrode Contact with Novel Molecular Tunnel Junctions
NER:利用新型分子隧道连接设计分子-电极接触
- 批准号:
0608730 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Tunneling Spectroscopy for Nanofabricated Biochemical Sensors
纳米生化传感器的隧道光谱
- 批准号:
0601269 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Perovskite Buffer Layers for Compound Semiconductor-Silicon Heteroepitaxy
职业:用于化合物半导体-硅异质外延的钙钛矿缓冲层
- 批准号:
0239006 - 财政年份:2003
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
Achieving a tunable hybrid plasmonic-semiconductor laser incorporating epsilon-near-zero materials
实现结合ε近零材料的可调谐混合等离子体半导体激光器
- 批准号:
569945-2022 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Optical phased array based on electrically tunable plasmonic nanoantennas
基于电可调等离子体纳米天线的光学相控阵
- 批准号:
533970-2018 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Collaborative Research and Development Grants
EAGER: Gate tunable thermo-plasmonic mid-IR coherent light emitters
EAGER:门可调谐热等离子体中红外相干光发射器
- 批准号:
2016636 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Tailorable, responsive, and morphologically-tunable plasmonic chiroptical nanoparticle superstructures
可定制、响应性和形态可调的等离子体手性光学纳米颗粒超结构
- 批准号:
1904960 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Optical phased array based on electrically tunable plasmonic nanoantennas
基于电可调等离子体纳米天线的光学相控阵
- 批准号:
533970-2018 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Collaborative Research and Development Grants
Optical phased array based on electrically tunable plasmonic nanoantennas************
基于电可调等离子体纳米天线的光学相控阵************
- 批准号:
533970-2018 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Collaborative Research and Development Grants
MEMS plasmonic tunable color sheet by electrostatic actuator using stretchable thin film
使用可拉伸薄膜的静电致动器的 MEMS 等离子体可调谐颜色片
- 批准号:
15K13322 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Room Temperature Tunable Plasmonic-Enhanced Graphene Terahertz Photodetectors
室温可调谐等离子体增强石墨烯太赫兹光电探测器
- 批准号:
1309750 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
I-Corps: Low cost, high volume manufacturing of multicomponent plasmonic interfaces: A nanopaint-based technology for tunable light capturing and energy harvesting
I-Corps:低成本、大批量制造多组分等离子体接口:基于纳米涂料的可调谐光捕获和能量收集技术
- 批准号:
1242489 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Tunable Plasmonic Devices Enabled by Holographically-Formed Polymer Dispersed Liquid Crystals
由全息形成的聚合物分散液晶实现的可调谐等离子体器件
- 批准号:
1128099 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Standard Grant