EAGER: Gate tunable thermo-plasmonic mid-IR coherent light emitters
EAGER:门可调谐热等离子体中红外相干光发射器
基本信息
- 批准号:2016636
- 负责人:
- 金额:$ 11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this work is to demonstrate wavelength-tunable, laser-like, mid-infrared light emitters on a chip. This will be achieved, for the first time, by coupling of surface resonance in silicon carbide with plasmonic resonance in graphene films. The proposed tunable, mid-infrared source has many advantages over existing coherent infrared sources such as tunable lasers which include complete mechanical motion free tunability of wavelength, small size for various lightweight and mobile platforms, and extremely fast response for high speed applications. The small form factor, tunability and integration potential of these devices will usher a new generation of optical lab-on-chip devices where detection of relevant biomarkers, cells, and ligand chemistries can be spectroscopically realized and thus will enable the development of inexpensive, next generation point of care biosensors. The availability of frequency tunable emitters is likely to open opportunities in the area of on-chip optical communications and optical data transfer that are hitherto considered as cumbersome. The potential bandwidth afforded by such systems may revolutionize data transfer rates and volumes. A robust research and mentoring program consisting of a graduate and undergraduate student working on the project is proposed for this 1-year EAGER proposal.This proposal aims to explore, investigate, and demonstrate the possibility of achieving tunable, coherent radiation sources in 11 - 12 μm wavelength range. To accomplish this, we propose to hybridize the localized surface resonance of bulk thermo-plasmonic materials such as silicon carbide with gate-tunable surface plasmonic resonance of two-dimensional materials such as graphene to manipulate the emission characteristics of thermal radiation sources. The proposed experimental study will examine the relation between applied gate-voltage modulated optical properties of graphene, and the corresponding shift in coupled plasmonic and phononic resonance. The study is aimed at deepening the understanding of the coupling between surface phonon resonances of a radiating surface and gate tunable surface plasmon resonance of graphene sheets. The fact that surface phonons and surface plasmons are consequences of resonant ions and electrons respectively raises interesting questions of how momentum matching is balanced between particles of different rest masses. This study will present details of theoretical and the experimentally obtained emission/absorption properties at different temperatures and different wavelengths, specifically, the minimum resolution of wavelength shift that can be achieved with gate-voltage and temperature. From an experimental standpoint, the proposed work will systematically investigate plasmonic tuning of the emission characteristics. Heterogeneous integration techniques with novel micro and nanofabrication methods will be used. The electronic control will allow for programmability of the emitter to auto-sweep through a band of wavelength of interest, to determine the absorption spectrum of samples in spectroscopy applications. The wavelength sweep timeframes of the spectrometers can be potentially accomplished in the milli – nano seconds allowing for the realization of ultrafast IR tunable sources. The fast, narrowband emission characteristics of the gate-tunable plasmonic emitters can provide nearfield infrared communication solutions in the context of next generation neuromorphic computing and sensing devices. Preliminary calculations show that these sources can generate an intensity of ~200 µW/mm2 and should be enough for spectroscopy and communication applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项工作的目标是在芯片上展示波长可调的、类似激光的中红外发光器。这将首次通过碳化硅的表面共振和石墨烯薄膜的等离子体共振的耦合来实现。与现有的相干红外光源相比,这种可调谐中红外光源具有许多优点,例如可调谐激光器,包括完全机械运动的波长自由调谐,适用于各种轻型和移动平台的小尺寸,以及对高速应用的极快响应。这些器件的小尺寸、可调谐性和集成潜力将带来新一代光学芯片实验室器件,在这些器件中,相关生物标志物、细胞和配体化学的检测可以通过光谱实现,从而使廉价的下一代护理点生物传感器的开发成为可能。频率可调发射器的可获得性可能会在迄今被认为是繁琐的片上光通信和光数据传输领域打开机会。这种系统提供的潜在带宽可能会彻底改变数据传输速率和数据量。针对这个为期一年的项目,提出了一个由研究生和本科生组成的强有力的研究和指导计划。该计划旨在探索、调查和展示在11-12μm波长范围内实现可调谐的相干辐射源的可能性。为此,我们提出将碳化硅等体热等离子体材料的局域表面共振与石墨烯等二维材料的栅极可调谐表面等离子体共振相结合,以控制热辐射源的发射特性。这项拟议的实验研究将考察外加栅压调制的石墨烯光学性质与耦合等离子体和声子共振的相应位移之间的关系。这项研究旨在加深对辐射表面的表面声子共振和石墨烯的栅调谐表面等离子体共振之间的耦合的理解。表面声子和表面等离子体分别是共振离子和电子的结果,这一事实提出了一个有趣的问题,即不同静止质量的粒子之间的动量匹配是如何平衡的。这项研究将给出不同温度和不同波长下的理论和实验获得的发射/吸收特性的详细信息,特别是随栅极电压和温度所能获得的波长漂移的最小分辨率。从实验的角度来看,这项工作将系统地研究等离子体对发射特性的调谐。将使用具有新的微米和纳米制造方法的异质集成技术。电子控制将允许发射器的可编程性,以自动扫描感兴趣的波长带,以确定光谱学应用中样品的吸收光谱。分光计的波长扫描时间范围可能在毫纳秒内完成,从而实现超快红外可调谐光源。门可调等离子体发射器的快速、窄带发射特性可以在下一代神经形态计算和传感设备的背景下提供近场红外通信解决方案。初步计算表明,这些源可以产生约200微瓦/平方毫米的强度,应该足以用于光谱学和通信应用。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Srinivas Tadigadapa其他文献
Investigation of the Viscoelastic Properties of Liquids Trapped in Nanoporous Cavities using Micromachined Acoustic Transducers
- DOI:
10.1016/j.proeng.2011.12.157 - 发表时间:
2011-01-01 - 期刊:
- 影响因子:
- 作者:
Hwall Min;David Allara;Srinivas Tadigadapa - 通讯作者:
Srinivas Tadigadapa
Selective Functionalization of Micromachined Quartz Resonator Arrays Using Electrochemical Techniques for Biosensing Applications
使用电化学技术对生物传感应用微机械石英谐振器阵列进行选择性功能化
- DOI:
10.1109/lsens.2024.3398549 - 发表时间:
2024 - 期刊:
- 影响因子:2.8
- 作者:
P. Kao;David Allara;Srinivas Tadigadapa - 通讯作者:
Srinivas Tadigadapa
Room temperature infrared imaging array fabricated using heterogeneous integration methods
- DOI:
10.1016/j.proeng.2010.09.266 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Marcelo B. Pisani;Kailiang Ren;Ping Kao;Srinivas Tadigadapa - 通讯作者:
Srinivas Tadigadapa
Fabrication and Characterization of Micromachined Piezoelectric T-Beam Actuators
微机械压电 T 形梁致动器的制造和表征
- DOI:
10.1109/jmems.2012.2221682 - 发表时间:
2013 - 期刊:
- 影响因子:2.7
- 作者:
K. Mateti;Zheqian Zhang;Christopher D. Rahn;Srinivas Tadigadapa - 通讯作者:
Srinivas Tadigadapa
Fabrication and electromechanical performance of a novel high modulus ionogel micro-actuator
- DOI:
10.1016/j.proeng.2011.12.330 - 发表时间:
2011-01-01 - 期刊:
- 影响因子:
- 作者:
Gokhan Hatipoglu;Yang Liu;Dean Tigelaar;Mitra Yoonessi;Qiming Zhang;Srinivas Tadigadapa - 通讯作者:
Srinivas Tadigadapa
Srinivas Tadigadapa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Srinivas Tadigadapa', 18)}}的其他基金
Collaborative Research: An implantable intracranial ultrasound stimulation for treating neurodiseases
合作研究:用于治疗神经疾病的植入式颅内超声刺激
- 批准号:
2053591 - 财政年份:2021
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
PFI:AIR - TT: Continuous Urine Assay Instrumentation for Monitoring Kidney Function
PFI:AIR - TT:用于监测肾功能的连续尿液分析仪器
- 批准号:
1903210 - 财政年份:2018
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
PFI:AIR - TT: Continuous Urine Assay Instrumentation for Monitoring Kidney Function
PFI:AIR - TT:用于监测肾功能的连续尿液分析仪器
- 批准号:
1601385 - 财政年份:2016
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
I-Corps: Calorimetric Diagnostic Instrument for Acute Kidney Infection Monitoring
I-Corps:用于监测急性肾脏感染的量热诊断仪器
- 批准号:
1544180 - 财政年份:2015
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
CHIP SCALE MAGNETIC SENSOR ARRAYS BASED ON MAGNETOVISCOUS EFFECT OF FERROFLUIDS
基于铁磁流体磁粘效应的芯片级磁传感器阵列
- 批准号:
1305653 - 财政年份:2013
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
Quartz Resonator Array for calorimetric (bio)chemical Sensing Applications
用于量热(生物)化学传感应用的石英谐振器阵列
- 批准号:
0925438 - 财政年份:2009
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
MRI: High Aspect Ratio Etching System for Micro and Nanoscale Sensor and Sensor Systems Applications
MRI:用于微米级和纳米级传感器及传感器系统应用的高深宽比蚀刻系统
- 批准号:
0321099 - 财政年份:2003
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
MEMS Biosensor Array for Biochemical and Clinical Diagnostics
用于生化和临床诊断的 MEMS 生物传感器阵列
- 批准号:
0097468 - 财政年份:2001
- 资助金额:
$ 11万 - 项目类别:
Continuing Grant
相似国自然基金
面向无人机应用的增强型p-gate
AlGaN/GaN HEMT高功率微波辐射效应及
机理研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
二次外延势垒层的新型p-gate GaN HEMT器件栅极可靠性研究
- 批准号:
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
直接带隙In2Se3、GaTe纳米片/MoS2复合薄膜的制备及饱和吸收性能的研究
- 批准号:2020A151501861
- 批准年份:2020
- 资助金额:10.0 万元
- 项目类别:省市级项目
二次外延AlGaN势垒层的增强型p-gate GaN HEMT新结构研究
- 批准号:61904207
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
痛(感)觉传递新“gate”——DRG对外周痛觉信号传递的调控及对疼痛行为的影响
- 批准号:81870872
- 批准年份:2018
- 资助金额:61.0 万元
- 项目类别:面上项目
基于硅基一维纳米线的Gate-all-around纳米晶体管的研究
- 批准号:61176101
- 批准年份:2011
- 资助金额:52.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Toward Smart Surface Acoustic Wave Devices with Gate-Tunability
职业:开发具有栅极可调谐性的智能表面声波器件
- 批准号:
2337069 - 财政年份:2024
- 资助金额:
$ 11万 - 项目类别:
Continuing Grant
CAREER: Eradicate the Gate: Empowering Learners and Equalizing Assessment in K12 Engineering Education
职业:消除大门:K12 工程教育中的学习者赋权和均衡评估
- 批准号:
2339619 - 财政年份:2024
- 资助金额:
$ 11万 - 项目类别:
Continuing Grant
Dual Series Gate Configuration, Materials Design, and Mechanistic Modeling for Drift-Stabilized, Highly Sensitive Organic Electrochemical Transistor Biosensors
用于漂移稳定、高灵敏度有机电化学晶体管生物传感器的双串联栅极配置、材料设计和机械建模
- 批准号:
2402407 - 财政年份:2024
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
Deterministic quantum gate between photons in a next-generation light-matter interface
下一代光-物质界面中光子之间的确定性量子门
- 批准号:
EP/W035839/2 - 财政年份:2024
- 资助金额:
$ 11万 - 项目类别:
Research Grant
NSF-NSERC: Building a two-qubit controlled phase gate using laterally coupled semiconductor quantum dots
NSF-NSERC:使用横向耦合半导体量子点构建两个量子位控制的相位门
- 批准号:
2317047 - 财政年份:2023
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
Development of pH responsive polymer and inorganic porous support composite gate membrane
pH响应聚合物与无机多孔支撑复合闸膜的研制
- 批准号:
23K04468 - 财政年份:2023
- 资助金额:
$ 11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of fast self regulating digital active gate driver for SiC MOSFET
SiC MOSFET 快速自调节数字有源栅极驱动器的开发
- 批准号:
23H01399 - 财政年份:2023
- 资助金额:
$ 11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Deterministic quantum gate between photons in a next-generation light-matter interface
下一代光-物质界面中光子之间的确定性量子门
- 批准号:
EP/W035839/1 - 财政年份:2023
- 资助金额:
$ 11万 - 项目类别:
Research Grant
Development of Digital Active Gate Drive System for SiC MOSFETs toward Integration of Power Conversion Circuits
面向功率转换电路集成化的 SiC MOSFET 数字有源栅极驱动系统的开发
- 批准号:
22KJ1702 - 财政年份:2023
- 资助金额:
$ 11万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Research on the control of photon-magnon coupling state by strong gate electric field
强栅极电场控制光子-磁振子耦合态的研究
- 批准号:
22KJ1956 - 财政年份:2023
- 资助金额:
$ 11万 - 项目类别:
Grant-in-Aid for JSPS Fellows














{{item.name}}会员




