DECAY AND WELL-POSEDNESS OF SOLUTIONS TO HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS
双曲偏微分方程解的衰变与适定性
基本信息
- 批准号:1515047
- 负责人:
- 金额:$ 12.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2016-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the theory of General Relativity gravity is seen not as a force, but as the result of the bending of a four dimensional universe in both space and time. Einstein's Equations connect the curvature of spacetime to its mass/energy content. In local coordinates they can be written as the system of coupled nonlinear partial differential equations. Due to their complexity, most studies have focused on exact solutions, obtained by imposing additional symmetries, which include Schwarzschild (non-rotating black holes) and Kerr (rotating black holes) spacetimes. A natural and highly nontrivial problem is whether these particular solutions are stable under small perturbations. In other words, assuming that at a moment in time the curvature of a given spacetime is very close to the curvature of a Kerr spacetime, it is expected that after evolving for a long time it will eventually approach a (potentially different) Kerr spacetime. The main goal of this project is understanding the behavior of solutions to equations and systems of equations that model Einstein's Equations, but are simpler. The study of these toy problems is necessary in order to tackle the much harder nonlinear stability problem mentioned above. There has recently been a flurry of activity with regard to understanding the decay for the linear wave equations on Schwarzschild and Kerr spacetimes, which is the simplest possible model to study. Even this problem is quite difficult, since the complicated background geometry affects the dispersion properties in nontrivial ways. In compact regions one must deal with high frequency wave packets that linger along trapped geodesics for a long time, while at infinity the non-Euclidean character of the metric affects the pointwise rates of decay. The very delicate (and unstable) nature of the trapped set in particular requires tools coming from harmonic analysis, differential equations, and differential geometry. Nevertheless, robust ways of measuring decay (e.g. local energy estimates and Strichartz estimates) have now been established. These estimates can in turn be used to tackle nonlinear problems like global well-posedness (existence and uniqueness of solutions, and continuous dependence of initial data). One example of such nonlinear problems is the semilinear wave equation with power nonlinearities for both small and large initial data. Another example, which is a good model of Einstein's Equations in harmonic coordinates, is the wave equation for a metric that itself depends on the solution. These techniques can also be used to settle the problem of optimal decay of solutions to the Maxwell Equations, the linear system which describes the evolution of an electromagnetic field on Schwarzschild and Kerr backgrounds. Finally, there is interest in the study of higher dimensional black holes coming from string theory, which at low energies can be described by higher-dimensional theories of gravity. Understanding the relevant decay properties for the wave equation on these backgrounds would also be quite interesting.
在广义相对论中,引力不被视为一种力,而是四维宇宙在空间和时间上弯曲的结果。爱因斯坦方程将时空曲率与其质量/能量含量联系起来。在局部坐标系中,它们可以写成耦合非线性偏微分方程组。由于其复杂性,大多数研究都集中在通过施加额外对称性获得的精确解,其中包括史瓦西(非旋转黑洞)和克尔(旋转黑洞)时空。一个自然且非常重要的问题是这些特定的解决方案在小扰动下是否稳定。换句话说,假设在某个时刻给定时空的曲率非常接近克尔时空的曲率,则预计在演化很长一段时间后它最终将接近(可能不同的)克尔时空。该项目的主要目标是了解模拟爱因斯坦方程的方程和方程组的解的行为,但更简单。为了解决上述更困难的非线性稳定性问题,有必要研究这些玩具问题。最近,人们在理解史瓦西时空和克尔时空线性波动方程的衰变方面开展了一系列活动,这是最简单的研究模型。即使这个问题也相当困难,因为复杂的背景几何形状会以非平凡的方式影响色散特性。在致密区域中,我们必须处理沿着捕获测地线长时间徘徊的高频波包,而在无穷远处,度量的非欧几里得特征会影响逐点衰减率。俘获集非常微妙(且不稳定)的性质尤其需要来自调和分析、微分方程和微分几何的工具。尽管如此,现在已经建立了测量衰变的可靠方法(例如当地能量估计和 Strichartz 估计)。这些估计反过来可用于解决非线性问题,例如全局适定性(解的存在性和唯一性,以及初始数据的连续依赖性)。此类非线性问题的一个例子是对于小初始数据和大初始数据都具有幂非线性的半线性波动方程。另一个例子是爱因斯坦方程在调和坐标中的一个很好的模型,它是本身取决于解的度量的波动方程。这些技术还可用于解决麦克斯韦方程组解的最优衰减问题,麦克斯韦方程组是描述史瓦西和克尔背景下电磁场演化的线性系统。最后,人们对来自弦理论的高维黑洞的研究很感兴趣,在低能量下,可以用高维引力理论来描述。了解这些背景下波动方程的相关衰减特性也将非常有趣。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mihai Tohaneanu其他文献
Mihai Tohaneanu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mihai Tohaneanu', 18)}}的其他基金
DECAY AND WELL-POSEDNESS OF SOLUTIONS TO HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS
双曲偏微分方程解的衰变与适定性
- 批准号:
1636435 - 财政年份:2016
- 资助金额:
$ 12.3万 - 项目类别:
Standard Grant
DECAY AND WELL-POSEDNESS OF SOLUTIONS TO HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS
双曲偏微分方程解的衰变与适定性
- 批准号:
1362725 - 财政年份:2014
- 资助金额:
$ 12.3万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Well-posedness and long-time behavior of reaction-diffusion and kinetic equations
职业:反应扩散和动力学方程的适定性和长期行为
- 批准号:
2337666 - 财政年份:2024
- 资助金额:
$ 12.3万 - 项目类别:
Continuing Grant
Well-posedness and Long-time Behavior of Dispersive Integrable Systems
色散可积系统的适定性和长期行为
- 批准号:
2348018 - 财政年份:2024
- 资助金额:
$ 12.3万 - 项目类别:
Continuing Grant
Well-Posedness and Singularity Formation in Applied Free Boundary Problems
应用自由边界问题中的适定性和奇异性形成
- 批准号:
2307638 - 财政年份:2023
- 资助金额:
$ 12.3万 - 项目类别:
Standard Grant
Studies on behavior of solutions and the well-posedness for the nonlinear dispersive system in plasma physics
等离子体物理中非线性色散系统解的行为及适定性研究
- 批准号:
23KJ2028 - 财政年份:2023
- 资助金额:
$ 12.3万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Well-Posedness for Integrable Dispersive Partial Differential Equations
可积色散偏微分方程的适定性
- 批准号:
2054194 - 财政年份:2021
- 资助金额:
$ 12.3万 - 项目类别:
Standard Grant
Well-posedness of a model for the dynamics of fluids with the moving contact line
具有移动接触线的流体动力学模型的适定性
- 批准号:
21K13826 - 财政年份:2021
- 资助金额:
$ 12.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Research on the well-posedness, regularity, and justification of numerical methods for fluid problems and related boundary-value problems
流体问题及相关边值问题数值方法的适定性、规律性和合理性研究
- 批准号:
20K14357 - 财政年份:2020
- 资助金额:
$ 12.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Well-posedness for the equation on electrohydrodynamics
电流体动力学方程的适定性
- 批准号:
20K14350 - 财政年份:2020
- 资助金额:
$ 12.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Well-posedness for higher order dispersive equations and their symmetric structure
高阶色散方程及其对称结构的适定性
- 批准号:
20J12750 - 财政年份:2020
- 资助金额:
$ 12.3万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Well-posedness and blow-up criterion for the magnetohydrodynamics system
磁流体动力学系统的适定性和爆炸准则
- 批准号:
19J11320 - 财政年份:2019
- 资助金额:
$ 12.3万 - 项目类别:
Grant-in-Aid for JSPS Fellows