CAREER: A Systematic Data-Analytics Approach to the Design of Interface-Rich Materials
职业:用于设计富界面材料的系统数据分析方法
基本信息
- 批准号:1552716
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Interface-rich materials are pervasive in all engineered systems, including turbine discs for energy harvesting, and bonded layered composites in medical imaging equipment. The mechanisms that control performance of interface-rich materials manifest at the mesoscale, a length scale between the nanometer and macroscopic system (millimeter to meters) scales. Therefore, efficient design of these materials to achieve the performance metrics necessary for an engineered system (i.e., thermal resistance for x-ray generation) requires a quantitative understanding of the manufacturing processes and their relationship to the mechanisms at this "in-between" length scale. This Faculty Early Career Development (CAREER) award supports fundamental research needed integrate the theory of mesostructure performance, and statistical-based analysis of "big data." The design paradigm will be applied specifically to a forged nickel-based superalloy, and has the potential for broad impact on the rapid insertion of new materials and manufacturing processes to reduce cost and time-to-market for engineered systems which interface-rich materials.The research goal is to test the hypothesis that statistical data analytics can lead to a versatile design paradigm for the manufacturing of interface-rich materials for particular performance requirements. The predictive capabilities of these data-derived models will be assessed for Inconel-706 a forged Ni-based superalloy, with the performance metrics of high temperature strength and low cycle fatigue life. This alloy is significant for the manufacturing of efficient energy harvesting applications. The data for this research includes manufacturing, mesostructure and performance measures from legacy data obtained over the past 10 years by Alcoa Forging Research Group. The research team will test this hypothesis by cultivating an open, robust, data infrastructure that goes beyond a simple electronic "filing cabinet" and allows for seamless access to the data by analysis tools and allows for the analysis results to also be stored with all the associated metadata. Exploratory data analysis will guide the team in determining what additional datasets are needed to increase the statistical validity of the data-derived models. This research program supports broader efforts of the Material Science community through both the Materials Genome Initiative and Integrated Computational Materials Engineering by producing a robust, open-source data framework, which is generalizable to manufacturing routes of other interface-rich materials.
界面丰富的材料普遍存在于所有工程系统中,包括用于能量收集的涡轮机盘,以及医学成像设备中的粘合层状复合材料。控制富界面材料性能的机制表现在中尺度,即纳米和宏观系统(毫米到米)尺度之间的长度尺度。因此,有效设计这些材料以实现工程系统所需的性能指标(即,用于X射线产生的热阻)需要定量地理解制造过程以及它们与该“中间”长度尺度下的机制的关系。这个教师早期职业发展(CAREER)奖支持基础研究需要整合介观结构性能的理论,并基于“大数据”的分析。“设计范例将专门应用于锻造镍基高温合金,并有可能对新材料的快速插入和制造工艺产生广泛的影响,以降低界面丰富材料的工程系统的成本和上市时间。研究目标是测试统计数据分析可以导致界面制造的通用设计范式的假设,丰富的材料,满足特定的性能要求。这些数据导出的模型的预测能力将被评估为Inconel-706锻造镍基高温合金,高温强度和低周疲劳寿命的性能指标。这种合金对于制造高效的能量收集应用具有重要意义。这项研究的数据包括制造,细观结构和性能指标,这些数据来自Alcoa Forging Research Group在过去10年中获得的遗留数据。研究小组将通过建立一个开放、强大的数据基础设施来验证这一假设,该基础设施不仅限于简单的电子“文件柜”,还允许通过分析工具无缝访问数据,并允许分析结果与所有相关元数据一起存储。探索性数据分析将指导团队确定需要哪些额外的数据集来提高数据衍生模型的统计有效性。该研究计划通过材料基因组计划和集成计算材料工程支持材料科学界更广泛的努力,通过产生一个强大的开源数据框架,该框架可推广到其他界面丰富的材料的制造路线。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Data-Driven Framework to Select a Cost-Efficient Subset of Parameters to Qualify Sourced Materials
- DOI:10.1007/s40192-022-00266-3
- 发表时间:2022-07
- 期刊:
- 影响因子:3.3
- 作者:N. M. Senanayake;Jennifer L. W. Carter;C. Bowman;D. Ellis;J. Stuckner
- 通讯作者:N. M. Senanayake;Jennifer L. W. Carter;C. Bowman;D. Ellis;J. Stuckner
Characterization of nanoscale precipitates in superalloy 718 using high resolution SEM imaging
- DOI:10.1016/j.matchar.2018.12.018
- 发表时间:2019-02-01
- 期刊:
- 影响因子:4.7
- 作者:Smith, T. M.;Senanayake, N. M.;Carter, J.
- 通讯作者:Carter, J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Carter其他文献
Mental Skills for Endurance Sports
耐力运动的心理技能
- DOI:
10.1007/978-3-319-32982-6_18 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Jennifer Carter;S. Graef - 通讯作者:
S. Graef
Open Source Pharmacokinetic/Pharmacodynamic Framework: Tutorial on the BioGears Engine
开源药代动力学/药效学框架:BioGears 引擎教程
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
M. McDaniel;Jennifer Carter;Jonathan M Keller;Steven A. White;A. Baird - 通讯作者:
A. Baird
Towards institutional fit? The reality of institutional capacity through two food security exemplars
- DOI:
10.1016/j.geoforum.2016.09.001 - 发表时间:
2016-11-01 - 期刊:
- 影响因子:
- 作者:
Christine Slade;Jennifer Carter - 通讯作者:
Jennifer Carter
Attributional Style
归因风格
- DOI:
10.1007/978-1-4419-1005-9_100131 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
D. Abrams;J. Turner;L. Baumann;A. Karel;S. E. Collins;K. Witkiewitz;T. Fulmer;M. Tanenbaum;P. Commissariat;Elyse G. Kupperman;Rachel N. Baek;Jeffrey S. Gonzalez;Nicole Brandt;Rachel W. Flurie;J. Heaney;Christopher Kline;Linda Carroll;Janet Upton;P. Buchain;A. Vizzotto;Alexandra Martini de Oliveira;Tania C. T. Ferraz Alves;Quirino Cordeiro;Lorenzo Cohen;M. K. Garcia;Amy Jo Marcano;S. Ye;Y. Gidron;M. Gellman;M. Howren;M. Harlapur;D. Shimbo;Keisuke Ohta;N. Yahagi;E. Franzmann;Abanish Singh;Debra L Johnson;Benjamin L. Clarke;Rachel A. Millstein;Karen Niven;E. Miles;Barbara Resnick;Carter A. Lennon;Kelly S. DeMartini;K. L. MacGregor;M. Kirouac;Yoshiharu Yamamoto;U. Nater;Nicole L Nisly;D. Johnston;Y. Zanstra;Youngmee Kim;D. Matheson;Brooke McInroy;C. France;S. Fukudo;Emiko Tsuchiya;Yoko Katayori;Martin Deschner;Norman B. Anderson;Chad E. Barrett;M. Lumley;Lindsay Oberleitner;S. Bongard;Seth Hurley;A. M. Patiño;Anna C. Phillips;T. Akechi;S. Aldred;Kim Lavoie;Kate L. Jansen;Katherine Fortenberry;Molly S. Clark;T. Okuyama;W. Whang;M. al’Absi;Bingshuo Li;Elizabeth R. Pulgaron;Diana Wile;Beth A. Schroeder;Mary C Davis;A. Zautra;S. L. Stark;A. V. Soto;Anthony J. Wheeler;S. DeBerard;Josh W. Allen;A. Mitani;Jennifer Carter;Angela M. Hicks;Carolyn D Korbel;Austin S. Baldwin;K. Spink;Darren Nickel;M. Richter;R. Wright;Julian F. Thayer;D. Wiebe - 通讯作者:
D. Wiebe
Robust data expansion for optimised modelling using adaptive neuro-fuzzy inference systems
用于使用自适应神经模糊推理系统进行优化建模的稳健数据扩展
- DOI:
10.1016/j.eswa.2021.116138 - 发表时间:
2022-03-01 - 期刊:
- 影响因子:7.500
- 作者:
Samer Mohammed Jaber Mubarak;Andrew Crampton;Jennifer Carter;Simon Parkinson - 通讯作者:
Simon Parkinson
Jennifer Carter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Carter', 18)}}的其他基金
MRI: Acquisition of an SEM instrumented to conduct in-operando observations of materials performance under external stimuli
MRI:获取 SEM,用于在外部刺激下对材料性能进行操作中观察
- 批准号:
2018167 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
Closing the data gap: Systematic monitoring of PFAS remediation in soil
缩小数据差距:系统监测土壤中的 PFAS 修复情况
- 批准号:
DE240100756 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Discovery Early Career Researcher Award
Data Resource and Administrative Coordination Center for the Scalable and Systematic Neurobiology of Psychiatric and Neurodevelopmental Disorder Risk Genes Consortium
精神科和神经发育障碍风险基因联盟的可扩展和系统神经生物学数据资源和行政协调中心
- 批准号:
10642251 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
CAREER: Data-Driven Systematic Hierarchical Modeling
职业:数据驱动的系统分层建模
- 批准号:
2410514 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Integrating social data into systematic conservation planning.(4469)
将社会数据纳入系统保护规划。(4469)
- 批准号:
2760684 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Studentship
EAGER: Foundations for the Systematic Study of Synthetic Data
EAGER:综合数据系统研究的基础
- 批准号:
2333225 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Automated Statistical Techniques for Systematic Anomaly Detection in High Frequency Data
高频数据系统异常检测的自动统计技术
- 批准号:
RGPIN-2022-04426 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Construction of a systematic curriculum model that contributes to data science education at private universities
构建有助于私立大学数据科学教育的系统课程模型
- 批准号:
22K02930 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Systematic implementation and impact evaluation of data-driven cardiac surgery triaging tools to optimize operational efficiency and enhance patient outcomes during the COVID-19 pandemic and beyond
数据驱动的心脏手术分诊工具的系统实施和影响评估,以优化运营效率并提高 COVID-19 大流行期间及之后的患者治疗效果
- 批准号:
460227 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Operating Grants
CDS&E: Systematic Exploration of the High Entropy Alloy Space through High-Dimensional Thermodynamic Modeling from High-Throughput Computations and Experimental Data
CDS
- 批准号:
2001411 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Development and validation of tools for systematic review and meta-analyses of complex, biological data sets
开发和验证复杂生物数据集的系统审查和荟萃分析工具
- 批准号:
1814195 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Studentship