TWC: Small: Intelligent Malware Detection Utilizing Novel File Relation-Based Features and Resilient Techniques for Adversarial Attacks

TWC:小型:利用新颖的基于文件关系的功能和弹性技术进行对抗性攻击的智能恶意软件检测

基本信息

  • 批准号:
    1618629
  • 负责人:
  • 金额:
    $ 48.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-15 至 2019-11-30
  • 项目状态:
    已结题

项目摘要

Malware (e.g., viruses, worms, and Trojans) is software that deliberately fulfills the harmful intent of an attacker. It has been used as a major weapon by the cyber-criminals to launch a wide range of attacks that cause serious damages and significant financial losses to many Internet users. To protect legitimate users from these attacks, the most significant line of defense against malware is anti-malware software products, which predominately use signature-based methods to recognize threats. However, driven by considerable economic benefits, malware attackers are using automated malware development toolkits to quickly write and modify malicious codes that can evade detection by anti-malware products. In order to remain effective, the anti-malware industry calls for much more powerful methods that are capable of protecting the users against new threats and are more difficult to evade. The broader impacts of this work include benefits to the society at large by making cyberspace more secure and resilient to cyber-attacks. The project integrates research with education through curriculum development activities and engages graduate and undergraduate students in research. It is also expected to increase the involvement of underrepresented groups, including minority and women. The goal of this project is to design and develop intelligent and resilient solutions against malware attacks. The project is focused on the following research aims: (1) design novel relation-based features (e.g., file co-occurrence, file co-location, and bundled installations) that are more robust and harder to evade in malware detection; (2) design and develop an effective semi-supervised learning framework utilizing both content-based and relation-based features for malware detection; and (3) design and develop resilient techniques against adversarial attacks on machine learning/data mining based models. The techniques developed by this project will create a resilient platform, at both feature and model levels, against adversarial malware attacks. Furthermore, the proposed techniques are designed to be arm race capable, and can be used in other cyber security domains, such as anti-spam, fraud detection, and counter-terrorism. Through this project, a joint computer security lab will be established which aims at creating innovations for intelligent and resilient defenses against malware attacks as well as other cybersecurity threats.
恶意软件(例如病毒,蠕虫和特洛伊木马)是故意满足攻击者有害意图的软件。网络犯罪分子已将其用作主要武器,以发动广泛的攻击,造成严重损失和对许多互联网用户的重大财务损失。为了保护合法用户免受这些攻击的侵害,针对恶意软件的最重要的防御方法是反恶意软件产品,主要使用基于签名的方法来识别威胁。但是,在相当大的经济利益的驱动下,恶意软件攻击者正在使用自动化的恶意软件开发工具包来快速编写和修改恶意代码,以通过反恶意软件逃避检测。为了保持有效性,反恶意软件行业要求采用更强大的方法,这些方法能够保护用户免受新的威胁,并且更难逃避。这项工作的更广泛的影响包括通过使网络空间更加安全和对网络攻击的弹性来对整个社会的好处。该项目通过课程开发活动将研究与教育融为一体,并吸引研究生和本科生从事研究。预计它将增加包括少数族裔和妇女在内的代表性不足的群体的参与。该项目的目的是设计和开发针对恶意软件攻击的智能和弹性解决方案。该项目的重点是以下研究目的:(1)设计基于关系的功能(例如,文件共发生,文件共同定位和捆绑的安装),这些功能在恶意软件检测中更强大,更难逃避; (2)使用基于内容和基于关系的功能进行恶意软件检测设计和开发有效的半监督学习框架; (3)设计和开发针对基于机器学习/基于数据挖掘的模型的对抗性攻击的弹性技术。该项目开发的技术将在功能和模型级别上为对抗性恶意软件攻击创建一个有弹性的平台。此外,所提出的技术旨在具有手臂种族的能力,可用于其他网络安全域,例如反垃圾邮件,欺诈检测和反恐。通过该项目,将建立一个联合计算机安全实验室,旨在为针对恶意软件攻击以及其他网络安全威胁创造创新。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yanfang Ye其他文献

Classifying construction site photos for roof detection
对施工现场照片进行分类以进行屋顶检测
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Madhuri Siddula;F. Dai;Yanfang Ye;Jianping Fan
  • 通讯作者:
    Jianping Fan
THERMO-SENSITIVE SPIKELET DEFECTS 1 acclimatizes rice spikelet initiation and development to high temperature
热敏小穗缺陷 1 使水稻小穗的萌生和发育适应高温
  • DOI:
    10.1093/plphys/kiac576
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Zhengzheng Cai;Gang Wang;Jieqiong Li;Lan Kong;Weiqi Tang;Xuequn Chen;Xiaojie Qu;Chenchen Lin;Yulin Peng;Yang Liu;Zhanlin Deng;Yanfang Ye;Weiren Wu;Yuanlin Duan
  • 通讯作者:
    Yuanlin Duan
ISMCS: An intelligent instruction sequence based malware categorization system
ISMCS:基于智能指令序列的恶意软件分类系统
Survival neural networks for time-to-event prediction in longitudinal study
用于纵向研究中事件发生时间预测的生存神经网络
  • DOI:
    10.1007/s10115-020-01472-1
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    张健飞;陈黎飞;Yanfang Ye;郭躬德;Rongbo Chen;Alain Vanasse;王声瑞
  • 通讯作者:
    王声瑞
Soter: Smart Bracelets for Children's Safety
Soter:保护儿童安全的智能手环

Yanfang Ye的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yanfang Ye', 18)}}的其他基金

EAGER: A New Explainable Multi-objective Learning Framework for Personalized Dietary Recommendations against Opioid Misuse and Addiction
EAGER:一种新的可解释的多目标学习框架,用于针对阿片类药物滥用和成瘾的个性化饮食建议
  • 批准号:
    2334193
  • 财政年份:
    2023
  • 资助金额:
    $ 48.17万
  • 项目类别:
    Standard Grant
III: Small: A New Machine Learning Paradigm Towards Effective yet Efficient Foundation Graph Learning Models
III:小型:一种新的机器学习范式,实现有效且高效的基础图学习模型
  • 批准号:
    2321504
  • 财政年份:
    2023
  • 资助金额:
    $ 48.17万
  • 项目类别:
    Standard Grant
D-ISN: An AI-augmented Framework to Detect, Disrupt, and Dismantle Opioid Trafficking Networks
D-ISN:用于检测、破坏和拆除阿片类药物贩运网络的人工智能增强框架
  • 批准号:
    2146076
  • 财政年份:
    2022
  • 资助金额:
    $ 48.17万
  • 项目类别:
    Standard Grant
CAREER: Securing Cyberspace: Gaining Deep Insights into the Online Underground Ecosystem
职业:保护网络空间:深入了解在线地下生态系统
  • 批准号:
    2203261
  • 财政年份:
    2021
  • 资助金额:
    $ 48.17万
  • 项目类别:
    Continuing Grant
EAGER: An AI-driven Paradigm for Collective and Collaborative Community Resilience in the COVID-19 Era and Beyond
EAGER:COVID-19 时代及以后的集体和协作社区复原力的人工智能驱动范式
  • 批准号:
    2209814
  • 财政年份:
    2021
  • 资助金额:
    $ 48.17万
  • 项目类别:
    Standard Grant
III: Small: Mining Heterogeneous Network Built from Multiple Data Sources to Reduce Opioid Overdose Risks
III:小型:挖掘由多个数据源构建的异构网络以减少阿片类药物过量风险
  • 批准号:
    2214376
  • 财政年份:
    2021
  • 资助金额:
    $ 48.17万
  • 项目类别:
    Standard Grant
III: Medium: A Data-driven and AI-augmented Framework for Collaborative Decision Making to Combat Infectious Disease Outbreaks
III:媒介:数据驱动和人工智能增强的框架,用于对抗传染病爆发的协作决策
  • 批准号:
    2217239
  • 财政年份:
    2021
  • 资助金额:
    $ 48.17万
  • 项目类别:
    Continuing Grant
CICI: SSC: SciTrust: Enhancing Security for Modern Software Programming Cyberinfrastructure
CICI:SSC:SciTrust:增强现代软件编程网络基础设施的安全性
  • 批准号:
    2218762
  • 财政年份:
    2021
  • 资助金额:
    $ 48.17万
  • 项目类别:
    Standard Grant
III: Medium: A Data-driven and AI-augmented Framework for Collaborative Decision Making to Combat Infectious Disease Outbreaks
III:媒介:数据驱动和人工智能增强的框架,用于对抗传染病爆发的协作决策
  • 批准号:
    2107172
  • 财政年份:
    2021
  • 资助金额:
    $ 48.17万
  • 项目类别:
    Continuing Grant
EAGER: A Holistic Heterogeneous Temporal Graph Transformer Framework with Meta-learning to Combat Opioid Epidemic
EAGER:利用元学习对抗阿片类药物流行病的整体异构时间图转换器框架
  • 批准号:
    2203262
  • 财政年份:
    2021
  • 资助金额:
    $ 48.17万
  • 项目类别:
    Standard Grant

相似国自然基金

靶向Treg-FOXP3小分子抑制剂的筛选及其在肺癌免疫治疗中的作用和机制研究
  • 批准号:
    32370966
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
化学小分子激活YAP诱导染色质可塑性促进心脏祖细胞重编程的表观遗传机制研究
  • 批准号:
    82304478
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
靶向小胶质细胞的仿生甘草酸纳米颗粒构建及作用机制研究:脓毒症相关性脑病的治疗新策略
  • 批准号:
    82302422
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
HMGB1/TLR4/Cathepsin B途径介导的小胶质细胞焦亡在新生大鼠缺氧缺血脑病中的作用与机制
  • 批准号:
    82371712
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
小分子无半胱氨酸蛋白调控生防真菌杀虫活性的作用与机理
  • 批准号:
    32372613
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

CPS: Small: Brain-Inspired Memorization and Attention for Intelligent Sensing
CPS:小:智能传感的受大脑启发的记忆和注意力
  • 批准号:
    2312517
  • 财政年份:
    2023
  • 资助金额:
    $ 48.17万
  • 项目类别:
    Standard Grant
CNS Core: Small: Intelligent Fault Injection to Expose and Reproduce Production-Grade Bugs in Cloud Systems
CNS 核心:小型:智能故障注入以暴露和重现云系统中的生产级错误
  • 批准号:
    2317698
  • 财政年份:
    2023
  • 资助金额:
    $ 48.17万
  • 项目类别:
    Standard Grant
SHF:Small:Intelligent Management of Hybrid Workloads for Extreme Scale Computing
SHF:Small:超大规模计算混合工作负载的智能管理
  • 批准号:
    2413597
  • 财政年份:
    2023
  • 资助金额:
    $ 48.17万
  • 项目类别:
    Standard Grant
CC* Integration-Small: Network cyberinfrastructure innovation with an intelligent real-time traffic analysis framework and application-aware networking
CC* Integration-Small:网络基础设施创新,具有智能实时流量分析框架和应用感知网络
  • 批准号:
    2322369
  • 财政年份:
    2023
  • 资助金额:
    $ 48.17万
  • 项目类别:
    Standard Grant
Self-driving laboratories for autonomous exploration of protein sequence space
用于自主探索蛋白质序列空间的自动驾驶实验室
  • 批准号:
    10717598
  • 财政年份:
    2023
  • 资助金额:
    $ 48.17万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了