EAGER: 3D Electroluminescent Living Cellular Devices (ELICD) for Multicellular Systems Biology Research

EAGER:用于多细胞系统生物学研究的 3D 电致发光活细胞设备 (ELICD)

基本信息

  • 批准号:
    1638753
  • 负责人:
  • 金额:
    $ 9.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-01 至 2020-05-31
  • 项目状态:
    已结题

项目摘要

1638753 - KoomsonThere exists a wide gap between basic principles of brain function and clinical research suitable for multicellular systems biology research because neither the single cell- nor the whole organ/organism-based instruments can provide data on both biological and clinical correlation. Current research methodologies focus either on molecular or on the whole organ function, and existing methods are either unnatural, such as genetic modifications, or lack the depth to understand the brain as a system made of many million cells of different types. The objective of this exploratory project is to design, develop and implement a new class of "living cellular devices", combining 3D cerebral cortical cell cultures integrated in silk scaffolds with nanoscale optical and electronic devices to report data on real-time electrical activity of cells over long periods of time. The planned research is the first to use biometal-electroluminescence as a tool in biological research and to monitor/modulate electric activity of brain cellular systems. The instrument design exploits the unique optical and physical properties of robust biphotonic materials such as silk fibroin, which has shown great promise in realizing 3D optical elements, and fabrication of porous tissue scaffolds for cortical assembly integration. The new device will have significant broader impacts in various science and engineering areas, ranging from disease pathways, drug development and bioengineering based on correct understanding the biological processes and the intervening factors. Optoelectronic technologies are often applied in biomedicine, especially in imaging and diagnostics. The combination of basic scientific knowledge with clinical knowledge is necessary to advance the field of translational research towards well-targeted discoveries, diagnostics and treatments. The main gap between the basic and clinical research laboratories are the technologies suitable for multicellular systems biology research because neither the single cell- nor the whole organ/organism-based devices can inform on both multicellular systems dynamics and clinical correlates of the biological process. Thus it is first necessary to develop integrated biological devices providing data with both biological and clinical correlation. The objective of this project is to design, develop and implement a new class of optoelectronic devices, combining biologically-relevant 3D cerebral cortical cell cultures homed in silk scaffolds with nanoscale, electroluminescent Zirconium electronics to report data on real-time electrical activity of the cells over long periods of time. The project is the first to use biometal-electroluminescence as a tool in biological research and to monitor/modulate electric activity of brain cellular systems. The research will contribute to neural technologies as a bridge between basic- and clinical-research using a combination of tools and principles from biology, medicine, engineering and material science. The "living cellular devices" developed will be the first self-reporting, noninvasive, biologically/clinically relevant and millimeter-size bioelectronic systems to be used in fundamental brain research ex vivo and in vitro. Electroluminescence properties of Zirconium will be investigated and characterized, following with determining the range of interaction between the electric and the light components within the device. The studies will focus on detecting the changes in extracellular electric fields generated by the dynamics of cell resting membrane potential (an intrinsic regulator of several biological processes) ranging from long-range low magnitude to millisecond-speed changes. Current methodologies used in the area focus on conversion of the light into the electric signal while the proposed research will reverse the convention by converting the electric signal into light and this in a noninvasive manner. The proposed instrument design exploits the unique optical and physical properties of robust biphotonic materials such as silk fibroin, which has shown great promise in realizing 3D optical elements, and fabrication of porous tissue scaffolds for cortical assembly integration. The new optoelectronic device will have significant broader impacts in various science and engineering areas, ranging from drug development and bioengineering based on correct understanding of the biological processes and the intervening factors. The research will demonstrate a unique neuroengineering design that will allow studying brain functions in a cost- and time effective manner while keeping the high biological relevancy compared to the use of the laboratory animals or tools without biological components.
1638753 -Koomson脑功能的基本原理和适用于多细胞系统生物学研究的临床研究之间存在很大的差距,因为无论是基于单细胞还是基于整个器官/生物体的仪器都不能提供生物学和临床相关性的数据。 目前的研究方法集中在分子或整个器官功能上,现有的方法要么是非自然的,如遗传修饰,要么缺乏深度来理解大脑作为一个由数百万不同类型细胞组成的系统。这个探索性项目的目标是设计、开发和实施一类新的“活细胞装置”,将3D大脑皮层细胞培养物与纳米级光学和电子装置结合在一起,以报告长时间内细胞实时电活动的数据。计划中的研究是第一个使用生物电致发光作为生物研究工具,并监测/调节脑细胞系统的电活动。该仪器的设计利用了强大的双光子材料,如丝素蛋白,这在实现3D光学元件和制造多孔组织支架皮质组件集成显示出很大的希望独特的光学和物理特性。 新设备将在各种科学和工程领域产生更广泛的影响,包括疾病途径,药物开发和基于正确理解生物过程和干预因素的生物工程。光电技术经常应用于生物医学,特别是成像和诊断。基础科学知识与临床知识的结合对于推动转化研究领域朝着有针对性的发现、诊断和治疗方向发展是必要的。基础和临床研究实验室之间的主要差距是适用于多细胞系统生物学研究的技术,因为无论是单细胞还是整个器官/生物体的设备都不能提供多细胞系统动力学和生物过程的临床相关信息。因此,首先有必要开发集成的生物设备,提供生物和临床相关性的数据。该项目的目标是设计,开发和实施一类新的光电设备,将生物相关的3D大脑皮层细胞培养物与纳米级电致发光锆电子器件结合起来,以报告细胞长时间的实时电活动数据。该项目是第一个使用生物电致发光作为生物研究工具,并监测/调节脑细胞系统的电活动。这项研究将有助于神经技术作为基础和临床研究之间的桥梁,使用生物学,医学,工程和材料科学的工具和原理的组合。开发的“活细胞设备”将是第一个自我报告,非侵入性,生物/临床相关和毫米大小的生物电子系统,用于体外和体外基础脑研究。锆的电致发光特性将被研究和表征,随后确定设备内电和光组件之间的相互作用范围。这些研究将侧重于检测细胞静息膜电位(几种生物过程的内在调节剂)动态产生的细胞外电场的变化,范围从远程低幅度到毫秒速度的变化。目前该领域使用的方法集中在将光转换为电信号,而拟议的研究将通过将电信号转换为光来扭转传统,并且以非侵入性的方式进行。拟议的仪器设计利用了独特的光学和物理特性的强大的双光子材料,如丝素蛋白,这已显示出很大的希望,在实现3D光学元件,并制造多孔组织支架皮质组件集成。 新的光电器件将在各个科学和工程领域产生更广泛的影响,从药物开发和基于对生物过程和干预因素的正确理解的生物工程。该研究将展示一种独特的神经工程设计,该设计将允许以成本和时间有效的方式研究大脑功能,同时与使用没有生物成分的实验室动物或工具相比保持高度的生物相关性。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Microfluidic platform to study intercellular connectivity through on-chip electrical impedance measurement
通过片上电阻抗测量研究细胞间连接的微流体平台
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Valencia Koomson其他文献

ChromaSense-Empowering Health, Empowering You
ChromaSense-赋能健康,赋能您
Calibration-free measurements of absolute absorption and reduced scattering coefficients in optically diffusive media
光学扩散介质中绝对吸收和降低散射系数的免校准测量
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Giles Blaney;A. Sassaroli;Alper Kılıç;Jodee Frias;Fatemeh Tavakoli;Valencia Koomson;S. Fantini
  • 通讯作者:
    S. Fantini

Valencia Koomson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Valencia Koomson', 18)}}的其他基金

PFI-TT: A Noninvasive Biological Research Tool for Measurement of Tissue and Cerebral Oxygenation
PFI-TT:一种用于测量组织和脑氧合的无创生物学研究工具
  • 批准号:
    1919038
  • 财政年份:
    2019
  • 资助金额:
    $ 9.06万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Ultrasensitive frequency domain spectrometer for high throughput bacteria detection in floodwater
EAGER:协作研究:用于洪水中高通量细菌检测的超灵敏频域光谱仪
  • 批准号:
    1760500
  • 财政年份:
    2018
  • 资助金额:
    $ 9.06万
  • 项目类别:
    Standard Grant
60th IEEE International Midwest Symposium on Circuits and Systems: Support for Student Participation, August 6 - 9, 2017. Tufts University, Boston, MA
第 60 届 IEEE 国际中西部电路与系统研讨会:支持学生参与,2017 年 8 月 6 日至 9 日。塔夫茨大学,波士顿,马萨诸塞州
  • 批准号:
    1741996
  • 财政年份:
    2017
  • 资助金额:
    $ 9.06万
  • 项目类别:
    Standard Grant
3D Integrated 80Gb/s SiGe Heterojunction Bipolar Electroabsoprtion Modulator
3D 集成 80Gb/s SiGe 异质结双极电吸收调制器
  • 批准号:
    1128479
  • 财政年份:
    2011
  • 资助金额:
    $ 9.06万
  • 项目类别:
    Continuing Grant
I/UCRC for Optical Wireless Applications
用于光纤无线应用的 I/UCRC
  • 批准号:
    0968651
  • 财政年份:
    2010
  • 资助金额:
    $ 9.06万
  • 项目类别:
    Standard Grant
CAREER: Wireless Optical Sensors for High Resolution Imaging of Biological Structures
职业:用于生物结构高分辨率成像的无线光学传感器
  • 批准号:
    0953635
  • 财政年份:
    2010
  • 资助金额:
    $ 9.06万
  • 项目类别:
    Continuing Grant
Workshop: 21st Annual on Interconnections within High-speed Digital Systems: Support for Student Participation. To be Held in Sante Fe, New Mexico on May 2-5, 2010.
研讨会:第 21 届高速数字系统互连年会:支持学生参与。
  • 批准号:
    0948091
  • 财政年份:
    2010
  • 资助金额:
    $ 9.06万
  • 项目类别:
    Standard Grant
BRIGE: Multi-Spectral, High-Frequency Imaging Sensors for Frequency-Domain Biomedical Imaging
BRIGE:用于频域生物医学成像的多光谱高频成像传感器
  • 批准号:
    0824405
  • 财政年份:
    2008
  • 资助金额:
    $ 9.06万
  • 项目类别:
    Standard Grant
Collaborative Research: 3D Integrated Imaging Receivers for 10-Gb/s Free Space Optical MIMO
合作研究:用于 10 Gb/s 自由空间光 MIMO 的 3D 集成成像接收器
  • 批准号:
    0823946
  • 财政年份:
    2008
  • 资助金额:
    $ 9.06万
  • 项目类别:
    Standard Grant
Graduate Research Fellowship Program
研究生研究奖学金计划
  • 批准号:
    0124301
  • 财政年份:
    2001
  • 资助金额:
    $ 9.06万
  • 项目类别:
    Fellowship Award

相似国自然基金

锰酸锂基复合气凝胶的3D打印构筑及其提锂机制研究
  • 批准号:
    JCZRLH202500778
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
智能3D超微血管成像联合实时剪切波弹性评估胎盘功能对高血压孕妇子痫前期的预测效能分析
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
3D打印楔形梯度多孔支架的优化构建及促进HTO术后骨再生修复的实验研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于3D Slicer的颅内动脉瘤破裂风险评估机器学习模型开发及临床推广应用
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
3D打印PH-GBS@CCP复合支架诱导骨肉瘤铜死亡及增效抗PD-1治疗的作用机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
双重固化3D打印连续纤维C/C复合材料成型与渗碳致密化机理研究
  • 批准号:
    2025JJ60269
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
载椎体骨髓干细胞外泌体3D打印n-HA/PA66生物支架的研制及促脊柱融合机制研究
  • 批准号:
    2025JJ80409
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于微流控技术的3D细胞培养体系构建及在乳腺癌耐药机制中应用研究
  • 批准号:
    2025JJ70487
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    $ 9.06万
  • 项目类别:
    Studentship
Exploiting DNS in 3D Design
在 3D 设计中利用 DNS
  • 批准号:
    2777188
  • 财政年份:
    2026
  • 资助金额:
    $ 9.06万
  • 项目类别:
    Studentship
3D Printing Proteins for Continuous Flow Biocatalysis and Bioabsorbtion
用于连续流生物催化和生物吸收的 3D 打印蛋白质
  • 批准号:
    2753054
  • 财政年份:
    2026
  • 资助金额:
    $ 9.06万
  • 项目类别:
    Studentship
3D printer for Additively Manufactured Electronics
用于增材制造电子产品的 3D 打印机
  • 批准号:
    539303076
  • 财政年份:
    2024
  • 资助金额:
    $ 9.06万
  • 项目类别:
    Major Research Instrumentation
System for 3D femtosecond laser-based micromachining
基于飞秒激光的 3D 微加工系统
  • 批准号:
    537273289
  • 财政年份:
    2024
  • 资助金额:
    $ 9.06万
  • 项目类别:
    Major Research Instrumentation
HoloSurge: Multimodal 3D Holographic tool and real-time Guidance System with point-of-care diagnostics for surgical planning and interventions on liver and pancreatic cancers
HoloSurge:多模态 3D 全息工具和实时指导系统,具有护理点诊断功能,可用于肝癌和胰腺癌的手术规划和干预
  • 批准号:
    10103131
  • 财政年份:
    2024
  • 资助金额:
    $ 9.06万
  • 项目类别:
    EU-Funded
Optimisation of Buildable Structures for 3D Concrete Printing
3D 混凝土打印可建造结构的优化
  • 批准号:
    DP240101708
  • 财政年份:
    2024
  • 资助金额:
    $ 9.06万
  • 项目类别:
    Discovery Projects
CMMI-EPSRC: Damage Tolerant 3D micro-architectured brittle materials
CMMI-EPSRC:耐损伤 3D 微结构脆性材料
  • 批准号:
    EP/Y032489/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.06万
  • 项目类别:
    Research Grant
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
  • 批准号:
    2327466
  • 财政年份:
    2024
  • 资助金额:
    $ 9.06万
  • 项目类别:
    Standard Grant
STTR Phase II: Fabrication and Structural Testing of a 3D Concrete Printed Anchor for Floating Offshore Wind
STTR 第二阶段:用于浮动海上风电的 3D 混凝土打印锚的制造和结构测试
  • 批准号:
    2333306
  • 财政年份:
    2024
  • 资助金额:
    $ 9.06万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了