Hybrid Bioprinting of Regenerative Osteochondral (Bone-Cartilage) Tissues
再生骨软骨(骨软骨)组织的混合生物打印
基本信息
- 批准号:1663128
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Regenerative tissue engineering combines medicine and engineering to develop custom tissue structures that replace damaged tissue or organs. Over the last two decades, research efforts have focused on the manufacture of tissue structures by combining cells and biological nutrients. However, many of these methods have limitations in their ability to precisely arrange cells and nutrients as in natural tissue structures. To address these issues, this research plans to investigate a hybrid bioprinting process, which can control the three dimensional organization of cells and trigger specific cellular activities. Cells from rat bone marrow will placed at target locations within a scaffold structure. They will be further transformed into bone and cartilage cell types by adjusting the bio printing process parameters and material compositions. If successful, the research will be the first step in the production of bone-tissue constructs, which could improve the quality of life for osteoarthritic patients, sports injury athletes and accident trauma survivors. Education and outreach efforts includes development of biomanufacturing coursework that will impact underrepresented students at both undergraduate and graduate levels. The PI will offer a summer camp for high-school students on biofabrication at the STEM Early College within Guilford County Schools. In addition, students will receive exposure to laboratories and pre-clinical trials at the Wake Forest Institute for Regenerative Medicine. This research will investigate hybrid bioprinting to control underlying pattern topology, mechanical stimuli and release of biochemical agents for cell based regenerative tissue engineering. The objectives of this research include: (1) computational modeling of the hybrid bioprinting process using finite element analysis and molecular dynamics models; (2) experimental investigation of different topological patterns, mechanical stimuli and biochemical cues on cell-scaffold interactions; (3) response surface optimization to establish relationships among interacting process parameters of hybrid bioprinting processes for optimal tissue engineering. The differentiation of rat cells into osteogenic (bone) and chondrogenic (cartilage) lineages will be studied within vascularized hydrogel scaffolds for long-term viability. The ability to manipulate bioprinting parameters and biomaterial compositions will create an effective method to building biomimetic functionally-gradient topographies. A model system will be developed to investigate the relationship between placement proximity, mechanical loading and release kinetics of bioactive factors on cell proliferation. Finally, biochemical assays and characterization of the regenerated bone-cartilage tissues will give insight for neo-tissue regeneration.
再生组织工程将医学和工程学相结合,开发出定制的组织结构,以取代受损的组织或器官。在过去的二十年里,研究工作的重点是通过结合细胞和生物营养来制造组织结构。然而,这些方法中的许多在精确安排细胞和营养物质的能力方面都有局限性,就像在自然组织结构中一样。为了解决这些问题,本研究计划研究一种混合生物打印过程,该过程可以控制细胞的三维组织并触发特定的细胞活动。来自大鼠骨髓的细胞将被放置在支架结构内的目标位置。通过调整生物打印工艺参数和材料组成,进一步转化为骨和软骨细胞类型。如果成功,这项研究将是生产骨组织结构的第一步,可以改善骨关节炎患者、运动损伤运动员和事故创伤幸存者的生活质量。教育和外展努力包括开发生物制造课程,这将影响到本科生和研究生的代表性不足的学生。PI将在吉尔福德县学校内的STEM早期学院为高中生提供生物制造夏令营。此外,学生还将接触到维克森林再生医学研究所的实验室和临床前试验。这项研究将研究杂交生物打印,以控制基于细胞的再生组织工程的基本图案拓扑、机械刺激和生化试剂的释放。本研究的目标包括:(1)使用有限元分析和分子动力学模型对混合生物印刷过程进行计算建模;(2)不同拓扑模式、机械刺激和生化线索对细胞-支架相互作用的实验研究;(3)响应面优化,以建立混合生物印刷过程中相互作用的过程参数之间的关系,以实现组织工程的最优化。大鼠细胞向成骨(骨)和软骨(软骨)分化的研究将在带血管的水凝胶支架中进行,以期长期存活。操纵生物打印参数和生物材料组成的能力将创造一种有效的方法来构建仿生功能梯度拓扑图。将开发一个模型系统来研究细胞增殖中生物活性因子的放置近似性、机械载荷和释放动力学之间的关系。最后,对再生的骨-软骨组织进行生化分析和表征,将为新组织的再生提供线索。
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Review of Biomedical Devices: Classification, Regulatory Guidelines, Human Factors, Software as a Medical Device, and Cybersecurity
- DOI:10.1007/s44174-023-00113-9
- 发表时间:2023-08
- 期刊:
- 影响因子:0
- 作者:Felix Tettey;Santosh Kumar Parupelli;Salil Desai
- 通讯作者:Felix Tettey;Santosh Kumar Parupelli;Salil Desai
Additive Manufacturing of Compensator Devices for Radiation Therapy
放射治疗补偿装置的增材制造
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Aldawood F, Desai S.
- 通讯作者:Aldawood F, Desai S.
Molecular Dynamics Simulation of Poly Acrylic Acid as a Resist Material for Thermal Nanoimprint Lithography Processes
聚丙烯酸作为热纳米压印光刻工艺抗蚀剂材料的分子动力学模拟
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Odujole J., Desai S.
- 通讯作者:Odujole J., Desai S.
Molecular Dynamics Study of the Quenching Effect on Direct Nanoimprint of Gold
金直接纳米压印猝灭效应的分子动力学研究
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Abhaysinh Gaikwad, Jahlani Clarke
- 通讯作者:Abhaysinh Gaikwad, Jahlani Clarke
Comparison Study of Stem Cell-Derived Extracellular Vesicles for Enhanced Osteogenic Differentiation
- DOI:10.1089/ten.tea.2020.0194
- 发表时间:2020-11-19
- 期刊:
- 影响因子:4.1
- 作者:Pishavar, Elham;Copus, Joshua S.;Lee, Sang Jin
- 通讯作者:Lee, Sang Jin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Salil Desai其他文献
Predictive Modeling of Additive Manufacturing Process using Deep Learning Algorithm
使用深度学习算法对增材制造过程进行预测建模
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Michael Ogunsanya;Salil Desai - 通讯作者:
Salil Desai
Three-Dimensional-Printed Composite Structures: The Effect of LSCF Slurry Solid Loading, Binder, and Direct-Write Process Parameters
三维打印复合结构:LSCF 浆料固体负载、粘合剂和直写工艺参数的影响
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3.4
- 作者:
Man Yang;Santosh Kumar Parupelli;Zhigang Xu;Salil Desai - 通讯作者:
Salil Desai
Explainable AI for Cyber-Physical Systems: Issues and Challenges
网络物理系统的可解释人工智能:问题和挑战
- DOI:
10.1109/access.2024.3395444 - 发表时间:
2024 - 期刊:
- 影响因子:3.9
- 作者:
Amber Hoenig;K. Roy;Y. Acquaah;Sun Yi;Salil Desai - 通讯作者:
Salil Desai
SHORT–TERM AND LONG–TERM OUTCOMES IN PATIENTS WITH CHRONIC OBSTRUCTS PULMONARY DISEASE UNDERGOING ISOLATED AORTIC VALVE REPLACEMENT FOR AORTIC STENOSIS
- DOI:
10.1016/s0735-1097(13)61981-6 - 发表时间:
2013-03-12 - 期刊:
- 影响因子:
- 作者:
Salil Desai;Hersh Maniar;Toshinobu Kazui;Eric Novak;Ralph Damiano;Marc Moon;Jennifer Lawton;Alan Zajarias - 通讯作者:
Alan Zajarias
Unique clinical presentation and management of lead-stent abrasion
- DOI:
10.1016/j.hrcr.2017.10.006 - 发表时间:
2018-02-01 - 期刊:
- 影响因子:
- 作者:
Salil Desai;James E. Ip;Akhilesh K. Sista;Quynh A. Truong;Bruce B. Lerman;Jim W. Cheung - 通讯作者:
Jim W. Cheung
Salil Desai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Salil Desai', 18)}}的其他基金
I-Corps: 3D Printing of Microneedles for Transdermal Drug Delivery
I-Corps:用于透皮给药的微针 3D 打印
- 批准号:
2116181 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Excellence in Research: A Cyber-Physical System Framework for In-process Quality Assurance of Inkjet-based Additive Manufacturing
卓越的研究:基于喷墨的增材制造过程质量保证的网络物理系统框架
- 批准号:
2100850 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Excellence in Research: Convergent Physics-based Data-driven Bioprinting of Regenerative Tissues for Future Biomanufacturing
卓越的研究:基于融合物理的数据驱动的再生组织生物打印,用于未来的生物制造
- 批准号:
2100739 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
IGE: Developing a Research Engineer Identity
IGE:培养研究工程师身份
- 批准号:
1856346 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Combinatorial Additive Manufacturing Approach for Fabricating Nano/Micro 3D Structures
用于制造纳米/微米 3D 结构的组合增材制造方法
- 批准号:
1435649 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Hybrid Approach to Direct-Write Based Micro and Nano Manufacturing
职业:基于直写的微纳米制造的混合方法
- 批准号:
0846562 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
New High Performance Bioinks for 3D Extrusion Bioprinting
用于 3D 挤出生物打印的新型高性能生物墨水
- 批准号:
EP/X01990X/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Novel minimally-invasive in-situ 3D bioprinting platform for cardiac regeneration
用于心脏再生的新型微创原位3D生物打印平台
- 批准号:
EP/X027287/2 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Fellowship
Bioprinting and advanced visualisation of novel 3D model systems
新型 3D 模型系统的生物打印和高级可视化
- 批准号:
LE230100157 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
- 批准号:
10753836 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Individual cell bioprinting to generate multi-tissue type condensations for osteochondral tissue regeneration
单个细胞生物打印可生成用于骨软骨组织再生的多组织类型浓缩物
- 批准号:
10659772 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
High-throughput Spheroid Bioprinting Technology for Scalable Fabrication of Tissues
用于可扩展组织制造的高通量球体生物打印技术
- 批准号:
10744937 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
3D bioprinting nanofibre-reinforced vascular branches
3D生物打印纳米纤维增强血管分支
- 批准号:
2879497 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Studentship
From the bee's knees to biotechnology: Resilin-based hydrogels for cell-culture and bioprinting
从蜜蜂膝盖到生物技术:用于细胞培养和生物打印的基于 Resilin 的水凝胶
- 批准号:
2889865 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Studentship
Bioinks that Advance 3D bioprinting of cells to the 4th dimension
将细胞 3D 生物打印推进到第四维的生物墨水
- 批准号:
LP210200868 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Linkage Projects














{{item.name}}会员




