EAGER: Deterministic Placement of Qubits in Cavities for Strongly Coupled Quantum Repeaters
EAGER:强耦合量子中继器腔体中量子位的确定性放置
基本信息
- 批准号:1748106
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2020-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This EAGER project on Deterministic Placement of Qubits in Cavities for Strongly-Coupled Quantum Repeaters studies ways of optimally placing qubits within specially engineered environments (cavities) that will allow us to store, amplify and control the release of information contained by the qubit. Qubits, corresponding to quantum mechanical states, are the fundamental units of information in system where the rules of quantum mechanics explicitly govern the exchange, storage and transmission of information. Qubits within quantum systems hold great promise for faster, more secure processing and transmission of complex information, but there are profound, fundamental challenges that limit the longevity, storage and signal strength of qubit information. The use of specially-designed cavities can result in substantial amplification of qubit optical signals, allow storage of qubit information and provide a means of controlled transmission of the qubit information: such strongly coupled qubit-cavity systems can provide an important building block of larger-scale quantum information systems. A major challenge here lies in the optimal placement of the qubit within the cavity: the efficacy of the cavity can fall off dramatically with misalignments of only several atomic lattice distances. The research proposed here uses a semiconductor platform, developing sensitive means of fine-tuning the placement of atomic-scale qubits within the cavity, and using the amplified signals from the qubit-cavity system itself to guide the process. The knowledge gained from this research can have a profound and wide-ranging impact on a variety of qubit-cavity systems, bringing us much closer to achieving robust, scalable quantum information systems on a semiconductor "chip".Technical Description: The proposed EAGER project on Deterministic Placement of Qubits in Cavities for Strongly-Coupled Quantum Repeaters will build on exciting results observed in prior experiments involving Silicon Vacancies in 4H-SiC nanobridge cavities. These experiments suggest the possibility of deterministically placing defect-based qubits in spatial overlap with the maxima of the electromagnetic fields (modes) of the cavity, one of the greatest challenges in achieving strong coupling of qubit and cavity. The work of this project develops and tests a number of strategies to achieve better control over the diffusive motion of these defect-based qubits. To understand and interpret the placement process, a detailed understanding is required of the energy landscape of the qubit, and its sensitivity to thermal, electronic and strain variations; thus a collaborative effort between experiment and theory is mandatory for success. Therefore, the proposed work closely couples experiments, complemented and guided by theoretical simulations. The research team evaluates thermal control of the diffusion process, as well as the more localized and potentially better-controlled radiation enhanced diffusion processes. The team also explores the possibility of a self-aligned process, using the high field (modal) region of the cavity itself. Achieving the correct spatial overlap of qubit to the maximum field in a cavity is perhaps the greatest challenge to attaining strong coupling. Therefore, the studies proposed here will have a significant, wide-spread impact on creating scalable quantum information systems, across a broad spectral range. The resulting strongly coupled qubit-cavity devices can serve as effective quantum repeaters that link information from discrete, spatially-separated qubits across a network. Moreover, the collaborative and closely-coupled interaction between theory and experiment represented by this team provides a richer and more complete research and education environment, as well as setting benchmarks for how such challenging problems can and should be addressed.
这个关于强耦合量子中继器腔中量子位的确定性放置的EAGER项目研究了在特殊工程环境(腔)中最佳放置量子位的方法,这将使我们能够存储,放大和控制量子位所包含的信息的释放。量子比特对应于量子力学状态,是系统中信息的基本单位,量子力学规则明确支配信息的交换、存储和传输。量子系统中的量子比特在更快、更安全地处理和传输复杂信息方面有着巨大的潜力,但也存在着深刻的、根本性的挑战,限制了量子比特信息的寿命、存储和信号强度。使用特殊设计的腔可以导致量子比特光信号的大幅放大,允许量子比特信息的存储,并提供量子比特信息的受控传输的手段:这种强耦合的量子比特-腔系统可以提供更大规模量子信息系统的重要构建块。这里的一个主要挑战在于量子位在腔体内的最佳放置:只要有几个原子晶格距离的错位,腔的功效就会急剧下降。这里提出的研究使用半导体平台,开发精细调整腔体内原子级量子位的位置的灵敏方法,并使用来自量子位腔系统本身的放大信号来指导这一过程。从这项研究中获得的知识可以对各种量子位腔系统产生深远而广泛的影响,使我们更接近于在半导体“芯片”上实现强大的可扩展量子信息系统。技术描述:拟议的EAGER项目关于强-耦合量子中继器将建立在先前实验中观察到的令人兴奋的结果,这些实验涉及4 H-SiC纳米桥腔中的硅空位。这些实验表明,有可能确定性地将基于缺陷的量子位与腔的电磁场(模式)的最大值空间重叠,这是实现量子位和腔的强耦合的最大挑战之一。该项目的工作开发和测试了一些策略,以更好地控制这些基于缺陷的量子位的扩散运动。为了理解和解释放置过程,需要详细了解量子位的能量分布,以及它对热、电子和应变变化的敏感性;因此,实验和理论之间的合作是成功的必要条件。因此,所提出的工作密切耦合实验,补充和指导理论模拟。研究小组评估了扩散过程的热控制,以及更局部化和可能更好地控制辐射增强扩散过程。该团队还探索了自对准过程的可能性,使用腔体本身的高场(模态)区域。实现量子位与腔中最大场的正确空间重叠可能是实现强耦合的最大挑战。因此,本文提出的研究将对创建可扩展的量子信息系统产生重大而广泛的影响。由此产生的强耦合量子位腔器件可以作为有效的量子中继器,将来自离散的、空间分离的量子位的信息链接到网络中。此外,该团队所代表的理论与实验之间的协作和紧密耦合的互动提供了更丰富,更完整的研究和教育环境,并为如何解决这些具有挑战性的问题设定了基准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Evelyn Hu其他文献
An adaptive moiré sensor for spectro-polarimetric hyperimaging
一种用于光谱偏振超成像的自适应莫尔传感器
- DOI:
10.1038/s41566-025-01650-z - 发表时间:
2025-04-03 - 期刊:
- 影响因子:32.900
- 作者:
Haoning Tang;Beicheng Lou;Fan Du;Guangqi Gao;Mingjie Zhang;Xueqi Ni;Evelyn Hu;Amir Yacoby;Yuan Cao;Shanhui Fan;Eric Mazur - 通讯作者:
Eric Mazur
A color vision system for film thickness determination
用于薄膜厚度测定的色觉系统
- DOI:
10.1109/robot.1987.1087984 - 发表时间:
1987 - 期刊:
- 影响因子:0
- 作者:
S. Parthasarathy;D. Wolf;Evelyn Hu;S. Hackwood;G. Beni - 通讯作者:
G. Beni
Structural defects in Si-doped III–V nitrides
- DOI:
10.1007/s11664-006-0146-5 - 发表时间:
2006-07-01 - 期刊:
- 影响因子:2.500
- 作者:
Dmitri N. Zakharov;Zuzanna Liliental-Weber;Yan Gao;Evelyn Hu - 通讯作者:
Evelyn Hu
Evelyn Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Evelyn Hu', 18)}}的其他基金
Materials World Network to Optimize the Growth of InGaN Quantum Dots within High Quality Optical Micro-Cavities
材料世界网络将优化高质量光学微腔内 InGaN 量子点的生长
- 批准号:
1008480 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Insights on Science and Technology for Society (INSCITES)
科学技术造福社会的见解 (INSCITES)
- 批准号:
0525271 - 财政年份:2005
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
REU Site - Internships in Nanosystems Science, Engineering, and Technology
REU 网站 - 纳米系统科学、工程和技术实习
- 批准号:
0453525 - 财政年份:2005
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
REU Site - Internships in Nanosystems Science, Engineering and Technology (INSET)
REU 网站 - 纳米系统科学、工程和技术实习 (INSET)
- 批准号:
0139138 - 财政年份:2002
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
1994 International Conference on Indium Phosphide and Related Materials, Santa Barbara, CA
1994 年磷化铟及相关材料国际会议,加利福尼亚州圣巴巴拉
- 批准号:
9412822 - 财政年份:1994
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Renovation of Facilities for High Resolution Electron Beam Lithographic Patterning
高分辨率电子束光刻图案化设备的改造
- 批准号:
9313529 - 财政年份:1993
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Travel to Attend: 32nd International Symposium on Electron,Ion and Photon Beams, Fort Lauderdale, Florida May 31 - June 2, 1988
前往参加:第 32 届电子、离子和光子束国际研讨会,佛罗里达州劳德代尔堡,1988 年 5 月 31 日至 6 月 2 日
- 批准号:
8813290 - 财政年份:1988
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Gordon Research Conference on the Chemistry and Physics of Fabrication Microstructure
戈登制造微结构化学和物理研究会议
- 批准号:
8611363 - 财政年份:1986
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
Deterministic quantum gate between photons in a next-generation light-matter interface
下一代光-物质界面中光子之间的确定性量子门
- 批准号:
EP/W035839/2 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Scalable Algorithms for Deterministic Global Optimization With Parallel Architectures
使用并行架构实现确定性全局优化的可扩展算法
- 批准号:
2330054 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Understanding and Taming Deterministic Model Bit Flip attacks in Deep Neural Networks
协作研究:SaTC:核心:小型:理解和驯服深度神经网络中的确定性模型位翻转攻击
- 批准号:
2342618 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Mean-Field and Singular Limits of Deterministic and Stochastic Interacting Particle Systems
确定性和随机相互作用粒子系统的平均场和奇异极限
- 批准号:
2345533 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Methods for deterministic treatment effect estimates for clinical trials with missing data
缺失数据的临床试验的确定性治疗效果估计方法
- 批准号:
2886293 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Studentship
Towards deterministic atomic scale manufacturing of next-generation quantum devices
迈向下一代量子器件的确定性原子尺度制造
- 批准号:
EP/X021963/1 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Fellowship
Application of deterministic dopant devices to probabilistic information processing, quantum computing/measurement
确定性掺杂器件在概率信息处理、量子计算/测量中的应用
- 批准号:
23H00169 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Deterministic quantum gate between photons in a next-generation light-matter interface
下一代光-物质界面中光子之间的确定性量子门
- 批准号:
EP/W035839/1 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Research Grant
CloudEnergyBalance: Simple climate models to quantify impact of large-scale cloudiness & deterministic chaos on climatic variability & tipping points
CloudEnergyBalance:用于量化大规模多云影响的简单气候模型
- 批准号:
EP/Y01653X/1 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Fellowship
EAGER: Quantum Manufacturing: Machine learning-powered deterministic nanoassembly of ultrafast quantum photonic devices
EAGER:量子制造:机器学习驱动的超快量子光子器件的确定性纳米组装
- 批准号:
2240621 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant