SHF: Small: Deep Neural Network Inference on Energy-Harvesting Devices
SHF:小型:能量收集设备上的深度神经网络推理
基本信息
- 批准号:1815882
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Intermittently powered, energy-harvesting computers are sophisticated computing, sensing, and communicating systems that do not need a battery or tethered power source. These energy-harvesting devices will form the foundation of the next generation of internet-of-things (IoT) applications, ranging from wearable and implantable medical devices, to environmental and atmospheric monitoring, to tiny ChipSat-scale satellites in deep space. Realizing the value of these applications requires intelligent devices that can frequently make decisions locally and autonomously (i.e., without help from other nearby computers). For example, a device may need to decide whether to turn on a battery-draining camera to detect a person of interest, to decide which sensors embedded in concrete to enable to collect the most useful data about an aging bridge, and to decide when and how much data to send from these sensors back to the cloud. In recent years, statistical inference and machine learning using deep neural networks has proven the most successful method for such decision-making. Machine learning is a crucially important feature for future IoT devices, but today's resource-constrained energy-harvesting systems do not support the high-intensity computations required by deep neural network inference. This project builds the software computer systems and hardware computer architectures required by future, intermittent IoT devices to enable autonomous, intelligent decision-making using machine learning. This project produces software systems with novel algorithms that enable today's energy-harvesting IoT devices to efficiently make intelligent decisions. This project will then design novel parallel computer architectures that are designed specifically for efficient operation of machine learning computations with intermittent input power. These architectures further increase the efficiency of intermittent decision-making by 10s or 100s of times, enabling a new class of intelligent IoT applications that are not possible using today's architectures. The sum of these software and hardware components addresses the existential question of deep machine learning on intermittent systems, demonstrating its viability and realizing its benefits to academia, industry, and in applications important to society, such as defense, healthcare, and civil infrastructure. This project contributes towards a diverse future workforce, through integration with course curricula, mentoring of students from under-represented minority groups, and technical high school outreach programs.The key challenge overcome by this project is to make deep neural network inference viable on a resource-constrained, intermittent device. This task requires architecture and software support to tolerate frequent, intermittent power interruptions and to operate with hundreds of microwatts of power instead of the tens or hundreds of milliwatts required by today's machine learning accelerators. This project develops approximate, intermittent partial re-execution techniques to efficiently tolerate interruptions without the need to unnecessarily checkpoint and restore software state. The project develops the first intermittence-safe data-parallel architecture, integrating non-volatile memory with an array of simple compute elements. The project includes an immediate path to software and hardware prototypes and lays the groundwork for a future silicon hardware implementation of the architecture.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
间歇供电的能量收集计算机是复杂的计算、传感和通信系统,不需要电池或固定电源。这些能量收集设备将构成下一代物联网(IoT)应用的基础,从可穿戴和植入式医疗设备,到环境和大气监测,再到深空微型芯片卫星规模的卫星。实现这些应用程序的价值需要智能设备,这些设备可以经常在本地和自主地做出决策(即,不需要附近其他计算机的帮助)。例如,一个设备可能需要决定是否打开一个耗尽电池的摄像头来检测一个感兴趣的人,决定嵌入在混凝土中的哪些传感器能够收集有关一座老化桥梁的最有用的数据,并决定何时以及将多少数据从这些传感器发送回云端。近年来,使用深度神经网络的统计推理和机器学习已被证明是此类决策最成功的方法。机器学习是未来物联网设备的一个至关重要的功能,但今天的资源有限的能量收集系统不支持深度神经网络推理所需的高强度计算。该项目构建了未来间歇性物联网设备所需的软件计算机系统和硬件计算机架构,以实现使用机器学习的自主智能决策。该项目生产具有新颖算法的软件系统,使当今的能量收集物联网设备能够有效地做出智能决策。然后,该项目将设计新颖的并行计算机体系结构,专门用于间歇输入功率的机器学习计算的高效运行。这些架构进一步将间歇性决策的效率提高了10倍或100倍,从而实现了使用当今架构无法实现的新型智能物联网应用。这些软件和硬件组件的总和解决了间歇性系统上深度机器学习的存在问题,展示了它的可行性,并实现了它对学术界、工业界和对社会重要的应用(如国防、医疗保健和民用基础设施)的好处。该项目通过整合课程、对代表性不足的少数民族学生的指导以及技术高中外展项目,为未来多样化的劳动力做出贡献。该项目克服的关键挑战是使深度神经网络推理在资源受限的间歇性设备上可行。这项任务需要架构和软件支持,以容忍频繁的间歇性电源中断,并以数百微瓦的功率运行,而不是今天的机器学习加速器所需的数十或数百毫瓦。该项目开发了近似的、间歇的部分重新执行技术,以有效地容忍中断,而不需要不必要的检查点和恢复软件状态。该项目开发了第一个间歇性安全的数据并行架构,将非易失性存储器与一系列简单的计算元件集成在一起。该项目包括软件和硬件原型的直接路径,并为该架构的未来硅硬件实现奠定基础。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MANIC: A Vector-Dataflow Architecture for Ultra-Low-Power Embedded Systems
- DOI:10.1145/3352460.3358277
- 发表时间:2019-10
- 期刊:
- 影响因子:0
- 作者:Graham Gobieski;Amolak Nagi;Nathan Serafin;Mehmet Meric Isgenc;Nathan Beckmann;Brandon Lucia
- 通讯作者:Graham Gobieski;Amolak Nagi;Nathan Serafin;Mehmet Meric Isgenc;Nathan Beckmann;Brandon Lucia
Snafu: An Ultra-Low-Power, Energy-Minimal CGRA-Generation Framework and Architecture
- DOI:10.1109/isca52012.2021.00084
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Graham Gobieski;A. Atli;K. Mai;Brandon Lucia;Nathan Beckmann
- 通讯作者:Graham Gobieski;A. Atli;K. Mai;Brandon Lucia;Nathan Beckmann
RipTide: A Programmable, Energy-Minimal Dataflow Compiler and Architecture
RipTide:可编程、最低能耗数据流编译器和架构
- DOI:10.1109/micro56248.2022.00046
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Gobieski, Graham;Ghosh, Souradip;Heule, Marijn;Mowry, Todd;Nowatzki, Tony;Beckmann, Nathan;Lucia, Brandon
- 通讯作者:Lucia, Brandon
Intelligence Beyond the Edge: Inference on Intermittent Embedded Systems
- DOI:10.1145/3297858.3304011
- 发表时间:2018-09
- 期刊:
- 影响因子:0
- 作者:Graham Gobieski;Nathan Beckmann;Brandon Lucia
- 通讯作者:Graham Gobieski;Nathan Beckmann;Brandon Lucia
The Role of Edge Offload for Hardware-Accelerated Mobile Devices
边缘卸载对于硬件加速移动设备的作用
- DOI:10.1145/3446382.3448360
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Satyanarayanan, Mahadev;Beckmann, Nathan;Lewis, Grace A.;Lucia, Brandon
- 通讯作者:Lucia, Brandon
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathan Beckmann其他文献
UDIR: Towards a Unified Compiler Framework for Reconfigurable Dataflow Architectures
UDIR:迈向可重构数据流架构的统一编译器框架
- DOI:
10.1109/lca.2023.3342130 - 发表时间:
2024 - 期刊:
- 影响因子:2.3
- 作者:
Nikhil Agarwal;Mitchell Fream;Souradip Ghosh;Brian C. Schwedock;Nathan Beckmann - 通讯作者:
Nathan Beckmann
TVARAK: Software-Managed Hardware Offload for Redundancy in Direct-Access NVM Storage
TVARAK:软件管理的硬件卸载,用于直接访问 NVM 存储中的冗余
- DOI:
10.1109/isca45697.2020.00058 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Rajat Kateja;Nathan Beckmann;G. Ganger - 通讯作者:
G. Ganger
Design and analysis of spatially-partitioned shared caches
空间分区共享缓存的设计与分析
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Nathan Beckmann - 通讯作者:
Nathan Beckmann
Livia Queues : An implementation of message passing queues using specialized architecture
Livia Queues:使用专门架构的消息传递队列的实现
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Alexandru Stanescu;Nathan Beckmann - 通讯作者:
Nathan Beckmann
Distributed naming in a factored operating system
分解操作系统中的分布式命名
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Nathan Beckmann - 通讯作者:
Nathan Beckmann
Nathan Beckmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nathan Beckmann', 18)}}的其他基金
SHF: Medium: Provably Correct, Energy-Efficient Edge Computing
SHF:中:可证明正确、节能的边缘计算
- 批准号:
2403144 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CAREER: Hardware-Software Co-Design to Dynamically Specialize the Memory Hierarchy
职业:硬件-软件协同设计以动态专业化内存层次结构
- 批准号:
1845986 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
SHF: Small: Hardware-Software Co-design for Privacy Protection on Deep Learning-based Recommendation Systems
SHF:小型:基于深度学习的推荐系统的隐私保护软硬件协同设计
- 批准号:
2334628 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SHF: Small: Software and Hardware Support for Robust Deep Learning
SHF:小型:强大深度学习的软件和硬件支持
- 批准号:
2301334 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Towards Robust Deep Learning Computing on GPUs
合作研究:SHF:小型:在 GPU 上实现稳健的深度学习计算
- 批准号:
2301940 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SHF: Small: Energy and Computational Efficient Deep Generative AI Models via Emerging Devices, Circuits, and Architectures
SHF:小型:通过新兴设备、电路和架构实现能源和计算高效的深度生成人工智能模型
- 批准号:
2219753 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SHF: Small: Practical Analyses and Safe Transformations for Imperative Deep Learning Programs
SHF:小型:命令式深度学习程序的实用分析和安全转换
- 批准号:
2200343 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SHF: Small: NPU-based Architecture for Accelerating Deep Learning on Mobile Devices
SHF:小型:基于 NPU 的架构,用于加速移动设备上的深度学习
- 批准号:
2125208 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Towards Robust Deep Learning Computing on GPUs
合作研究:SHF:小型:在 GPU 上实现稳健的深度学习计算
- 批准号:
2114514 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Towards Robust Deep Learning Computing on GPUs
合作研究:SHF:小型:在 GPU 上实现稳健的深度学习计算
- 批准号:
2114519 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Towards Robust Deep Learning Computing on GPUs
合作研究:SHF:小型:在 GPU 上实现稳健的深度学习计算
- 批准号:
2114526 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SHF: Small: Knowledge Integrated Data-Efficient Deep Learning
SHF:小型:知识集成数据高效深度学习
- 批准号:
2006738 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant