RAISE: TAQS: Fast multiqubit control of high-coherence transmons for efficient quantum chemistry simulations
RAISE:TAQS:高相干传输的快速多量子位控制,用于高效的量子化学模拟
基本信息
- 批准号:1839136
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantum chemistry is one of the most promising near-term applications of modest-sized quantum computers. Quantum computers are devices that exploit the principles of quantum mechanics for computation. The goal is to solve problems that are intractable using even the most powerful supercomputers available. This research project aims to advance the simulation of molecules using quantum computers. The research team is developing methods to encode large molecules on relatively small and highly specialized quantum devices. These devices are made from state-of-the-art superconducting circuits operated with high-precision control schemes. A transdisciplinary approach that combines expertise in Physics, Chemistry, Engineering, and Materials Science is being taken to simulate molecules of increasing complexity over the course of the four-year project. The ability to perform such simulations could have a transformative effect on scientific, technological, and medicine applications, such as materials and drug design. Aspects of the proposed research also directly impact quantum computing, which has well-known repercussions for national security. Furthermore, this project contributes to the interdisciplinary education of the next generation of researchers in quantum information science. The research team also engages in outreach efforts which include mentoring high school students and establishing activities aimed at attracting Chemistry students into the field of Quantum Information Science.Modest-sized quantum computers are expected to surpass the capabilities of classical devices in solving quantum chemistry problems with high simulation accuracy. This project aims to solve quantum chemistry problems in quantum devices by developing an approach in which the orbitals are encoded in a smaller number of highly optimized qubits, using state-of-the-art superconducting circuits controlled with fast, high-fidelity quantum gates. The multi-disciplinary research team designs, implements, and optimizes platforms of highly connected transmons tailored to simulate strongly correlated molecules. Key elements of this research are: (i) Novel mappings between molecules and quantum processors that leverage effective Hamiltonians and additional levels in the transmons (qudits); (ii) Highly efficient state preparation protocols implemented with ultrafast two-qubit entangling gates and multi-qubit gates beyond the standard toolbox; (iii) High-coherence devices based on Josephson junctions, with device connectivity guided by the effective Hamiltonians, state preparation protocols, and quantum gate designs. Molecules of increasing complexity are simulated through mutually informed advances in quantum chemistry algorithms, devices, materials, and quantum control.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子化学是中型量子计算机最有前途的近期应用之一。 量子计算机是利用量子力学原理进行计算的设备。 目标是解决即使是最强大的超级计算机也难以解决的问题。该研究项目旨在利用量子计算机推进分子模拟。 该研究小组正在开发在相对较小和高度专业化的量子设备上编码大分子的方法。 这些设备由最先进的超导电路制成,采用高精度控制方案。一种跨学科的方法,结合了物理,化学,工程和材料科学的专业知识,正在采取模拟在四年的项目过程中越来越复杂的分子。执行这种模拟的能力可能会对科学,技术和医学应用产生变革性的影响,例如材料和药物设计。拟议研究的各个方面也直接影响量子计算,这对国家安全具有众所周知的影响。此外,该项目有助于下一代量子信息科学研究人员的跨学科教育。该研究团队还参与了推广工作,包括指导高中生和建立旨在吸引化学学生进入量子信息科学领域的活动。预计中等尺寸的量子计算机在解决量子化学问题方面的能力将超过经典设备,具有高模拟精度。该项目旨在通过开发一种方法来解决量子器件中的量子化学问题,在这种方法中,轨道被编码在数量较少的高度优化的量子位中,使用最先进的超导电路,由快速,高保真的量子门控制。多学科研究团队设计,实施和优化高度连接的transmons平台,以模拟强相关的分子。这项研究的关键要素是:(i)分子和量子处理器之间的新型映射,利用有效的哈密顿量和transmons(qudits)中的附加能级;(ii)使用超快双量子比特纠缠门和标准工具箱之外的多量子比特门实现的高效状态准备协议;(iii)基于约瑟夫森结的高相干器件,器件连接性由有效哈密顿量、状态准备协议和量子门设计指导。通过在量子化学算法、设备、材料和量子控制方面相互了解的进展来模拟日益复杂的分子。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An adaptive variational algorithm for exact molecular simulations on a quantum computer
- DOI:10.1038/s41467-019-10988-2
- 发表时间:2019-07-08
- 期刊:
- 影响因子:16.6
- 作者:Grimsley, Harper R.;Economou, Sophia E.;Mayhall, Nicholas J.
- 通讯作者:Mayhall, Nicholas J.
Symmetry Breaking Slows Convergence of the ADAPT Variational Quantum Eigensolver
对称性破缺减慢了 ADAPT 变分量子本征求解器的收敛速度
- DOI:10.1021/acs.jctc.2c00709
- 发表时间:2022
- 期刊:
- 影响因子:5.5
- 作者:Bertels, Luke W.;Grimsley, Harper R.;Economou, Sophia E.;Barnes, Edwin;Mayhall, Nicholas J.
- 通讯作者:Mayhall, Nicholas J.
Is the Trotterized UCCSD Ansatz Chemically Well-Defined?
- DOI:10.1021/acs.jctc.9b01083
- 发表时间:2020-01-01
- 期刊:
- 影响因子:5.5
- 作者:Grimsley, Harper R.;Claudino, Daniel;Mayhall, Nicholas J.
- 通讯作者:Mayhall, Nicholas J.
Avoiding symmetry roadblocks and minimizing the measurement overhead of adaptive variational quantum eigensolvers
- DOI:10.22331/q-2023-06-12-1040
- 发表时间:2021-09
- 期刊:
- 影响因子:6.4
- 作者:V. O. Shkolnikov;N. Mayhall;S. Economou;J. Dyke;George S. Barron;Edwin Barnes;Ho Lun Tang;Bryan T. G
- 通讯作者:V. O. Shkolnikov;N. Mayhall;S. Economou;J. Dyke;George S. Barron;Edwin Barnes;Ho Lun Tang;Bryan T. G
Efficient symmetry-preserving state preparation circuits for the variational quantum eigensolver algorithm
- DOI:10.1038/s41534-019-0240-1
- 发表时间:2020-01-28
- 期刊:
- 影响因子:7.6
- 作者:Gard, Bryan T.;Zhu, Linghua;Barnes, Edwin
- 通讯作者:Barnes, Edwin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sophia Economou其他文献
Sophia Economou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sophia Economou', 18)}}的其他基金
QLCI-CG: Center for Interdisciplinary Research in Quantum Information Theory and Simulation
QLCI-CG:量子信息理论与模拟跨学科研究中心
- 批准号:
1936726 - 财政年份:2019
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative research: Physics and Quantum Technology Applications of Defects in Silicon Carbide
合作研究:碳化硅缺陷的物理和量子技术应用
- 批准号:
1737921 - 财政年份:2018
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
EFRI ACQUIRE: Deterministic photonic graph-state repeater networks from solid state emitters integrated in chiral photonic circuits
EFRI ACQUIRE:来自集成在手性光子电路中的固态发射器的确定性光子图态中继器网络
- 批准号:
1741656 - 财政年份:2017
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Convergence QL:Workshop on Quantum Elements of Secure Communication
Convergence QL:安全通信的量子要素研讨会
- 批准号:
1745810 - 财政年份:2017
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
相似国自然基金
北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
- 批准号:31470312
- 批准年份:2014
- 资助金额:85.0 万元
- 项目类别:面上项目
相似海外基金
QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
- 批准号:
2326628 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
- 批准号:
2326746 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
- 批准号:
2326801 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
- 批准号:
2326840 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
- 批准号:
2326758 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks
QuSeC-TAQS:用于光学原子钟的新型量子算法
- 批准号:
2326810 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
- 批准号:
2326838 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
- 批准号:
2326528 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
QuSeC-TAQS: Quantum Sensing Platform for Biomolecular Analytics
QuSeC-TAQS:用于生物分子分析的量子传感平台
- 批准号:
2326748 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
- 批准号:
2326767 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant