RAISE-TAQS: Integrated Circuits of Single-Photon Sources from Organic Color-Centers
RAISE-TAQS:有机色心单光子源集成电路
基本信息
- 批准号:1839165
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will unite complementary expertise in quantum materials chemistry, theoretical physics, and quantum information science through an integrated collaboration involving two departments at the University of Maryland (Chemistry and Biochemistry, Electrical and Computer Engineering) and the UMD-NIST Joint Quantum Institute. It will also leverage ongoing collaborations with Los Alamos National Laboratory (LANL) on photophysics and with IBM on electronics interfacing. The project will promote the progress of science by advancing fundamental understanding of excitons at trapping defects and realizing a single-photon source that operates at room temperature and can be driven electrically. In addition to advancing an emerging frontier across chemistry, physics, quantum information science, and engineering, the work in this project is anticipated to also have a positive societal impact. First, the work will contribute to the development of next-generation computing and information technology by building interfaces between electronics and single-photon optics. Second, the project will provide exciting opportunities to engage students and reach a broader community. Particularly, this collaborative project will provide unique training opportunities for the next-generation workforce in quantum information science and technology through close collaborations with IBM and LANL, which are expected to enrich graduate training in this quickly evolving interdisciplinary field. This RAISE project will focus on probing and controlling the radiative recombination of electrons and holes at organic color-centers with the goal of achieving electrically driven single-photon sources that work at room temperature. Because the color centers are directly created in a carbon nanotube semiconductor host that can be controlled with established semiconductor technologies, electrons and holes can be electrically injected and directed to the color center where they recombine to produce single photons. This hypothesis is strongly supported by preliminary results and will be fully verified by experimental and theoretical efforts. The work is potentially groundbreaking and technologically transformative. First, organic color-centers provide a chemical pathway to synthesize high-quality single-photon sources. Unlike other color centers, which typically occur as native defects, organic color-centers can be synthetically created with molecular precision, thus opening vast opportunities for chemical innovation. Second, organic color-centers act as a two-level system in a semiconductor, effectively providing a "desktop atomic physics" laboratory for studying quasi-particles such as excitons and trions in trapping defects. Third, single-photon sources that can be driven electrically and work at room temperature will be an enabling element for quantum information science. Single photons are ideal quantum bits because they exhibit nearly infinite coherence time and can propagate over long distances. However, currently available solid-state single-photon sources suffer from limited scalability. Organic color-centers can be synthetically created in a semiconductor with molecular precision, opening up the possibility to address this significant challenge.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将通过马里兰大学两个系(化学与生物化学、电子与计算机工程)和马里兰大学-国家标准与技术研究院联合量子研究所的综合合作,联合量子材料化学、理论物理和量子信息科学方面的互补专业知识。它还将利用与洛斯阿拉莫斯国家实验室(LANL)在光物理学方面的持续合作以及与IBM在电子接口方面的合作。该项目将通过推进对捕获缺陷的激子的基本理解和实现在室温下工作并可以电驱动的单光子源来促进科学的进步。除了推进化学、物理、量子信息科学和工程领域的新兴前沿之外,该项目的工作预计还将产生积极的社会影响。首先,这项工作将通过建立电子和单光子光学之间的接口,为下一代计算和信息技术的发展做出贡献。其次,该项目将提供令人兴奋的机会,吸引学生和接触更广泛的社区。特别是,该合作项目将通过与IBM和LANL的密切合作,为量子信息科学与技术的下一代劳动力提供独特的培训机会,这有望丰富这一快速发展的跨学科领域的研究生培训。这个RAISE项目将专注于探测和控制有机色中心的电子和空穴的辐射重组,目标是实现在室温下工作的电驱动单光子源。因为色心是直接在碳纳米管半导体主体中产生的,可以用现有的半导体技术来控制,电子和空穴可以被电注入并引导到色心,在那里它们重新组合产生单光子。这一假设得到了初步结果的有力支持,并将通过实验和理论的努力得到充分验证。这项工作在技术上具有开创性和变革性。首先,有机色中心提供了合成高质量单光子源的化学途径。与其他通常作为天然缺陷出现的色心不同,有机色心可以用分子精度合成,从而为化学创新开辟了广阔的机会。其次,有机色心充当半导体中的两能级系统,有效地提供了一个“桌面原子物理”实验室,用于研究捕获缺陷中的激子和trions等准粒子。第三,可以在室温下电驱动的单光子源将成为量子信息科学的实现要素。单光子是理想的量子比特,因为它们具有几乎无限的相干时间,并且可以长距离传播。然而,目前可用的固态单光子源的可扩展性有限。有机色心可以在半导体中以分子精度合成,为解决这一重大挑战提供了可能性。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electroluminescence from 4-nitroaryl organic color centers in semiconducting single-wall carbon nanotubes
- DOI:10.1063/5.0039047
- 发表时间:2021-01
- 期刊:
- 影响因子:3.2
- 作者:Beibei Xu;Xiaojian Wu;Mijin Kim;Peng Wang;YuHuang Wang
- 通讯作者:Beibei Xu;Xiaojian Wu;Mijin Kim;Peng Wang;YuHuang Wang
Photon Correlation Spectroscopy of Luminescent Quantum Defects in Carbon Nanotubes
- DOI:10.1021/acs.nanolett.9b02553
- 发表时间:2019-10-01
- 期刊:
- 影响因子:10.8
- 作者:Nutz, Manuel;Zhang, Jiaxiang;Hoegele, Alexander
- 通讯作者:Hoegele, Alexander
Ultrafast Exciton Trapping at sp 3 Quantum Defects in Carbon Nanotubes
碳纳米管中 sp 3 量子缺陷的超快激子捕获
- DOI:10.1021/acsnano.9b06279
- 发表时间:2019
- 期刊:
- 影响因子:17.1
- 作者:Sykes, Matthew E.;Kim, Mijin;Wu, Xiaojian;Wiederrecht, Gary P.;Peng, Lintao;Wang, YuHuang;Gosztola, David J.;Ma, Xuedan
- 通讯作者:Ma, Xuedan
Tunable photo-patterning of organic color-centers
- DOI:10.1016/j.matdes.2021.110252
- 发表时间:2021-11
- 期刊:
- 影响因子:8.4
- 作者:Qingqing Dou;Beibei Xu;Xiaojian Wu;J. Mo;YuHuang Wang
- 通讯作者:Qingqing Dou;Beibei Xu;Xiaojian Wu;J. Mo;YuHuang Wang
Can armchair nanotubes host organic color centers?
扶手椅纳米管可以容纳有机色心吗?
- DOI:10.1088/1361-648x/ac8f7e
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Eller, Benjamin;Fortner, Jacob;Kłos, Jacek;Wang, YuHuang;Clark, Charles W
- 通讯作者:Clark, Charles W
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YuHuang Wang其他文献
A tube-in-a-tube semiconductor
管中管半导体
- DOI:
10.1109/am-fpd.2016.7543612 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Allen L. Ng;YuHuang Wang - 通讯作者:
YuHuang Wang
Controlling the optical properties of carbon nanotubes with organic colour-centre quantum defects
用有机色心量子缺陷控制碳纳米管的光学性质
- DOI:
10.1038/s41570-019-0103-5 - 发表时间:
2019-06-03 - 期刊:
- 影响因子:51.700
- 作者:
Alexandra H. Brozena;Mijin Kim;Lyndsey R. Powell;YuHuang Wang - 通讯作者:
YuHuang Wang
Applications of carbon nanotubes in biomedical studies.
碳纳米管在生物医学研究中的应用。
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Hongwei Liao;Bhavna S. Paratala;B. Sitharaman;YuHuang Wang - 通讯作者:
YuHuang Wang
Titelbild: Massively Parallel Dip–Pen Nanolithography with 55 000‐Pen Two‐Dimensional Arrays (Angew. Chem. 43/2006)
标题图片:具有 55 000 笔二维阵列的大规模并行浸笔纳米光刻(Angew. Chem. 43/2006)
- DOI:
10.1002/ange.200690148 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
K. Salaita;YuHuang Wang;J. Fragala;Rafael A. Vega;Chang Liu;C. Mirkin - 通讯作者:
C. Mirkin
Nanofabrication beyond electronics.
超越电子学的纳米制造。
- DOI:
10.1021/nn900448g - 发表时间:
2009 - 期刊:
- 影响因子:17.1
- 作者:
YuHuang Wang;C. Mirkin;So - 通讯作者:
So
YuHuang Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YuHuang Wang', 18)}}的其他基金
Controlling the Synthesis and Placement of Organic Color-Centers with Light
用光控制有机色心的合成和放置
- 批准号:
2204202 - 财政年份:2022
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Nanochemistry of sp3 Quantum Defects
sp3量子缺陷的纳米化学
- 批准号:
1904488 - 财政年份:2019
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
MRI: Acquisition of a Shared Atomic Force Microscope System
MRI:获取共享原子力显微镜系统
- 批准号:
1626288 - 财政年份:2016
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Chemical Control of Quantum Defects in Low-Dimensional Carbon Materials
低维碳材料中量子缺陷的化学控制
- 批准号:
1507974 - 财政年份:2015
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CAREER: Outerwall-selectively Functionalized Double-Wall Carbon Nanotubes--Optical and Electrical Properties of Semiconducting Nanotubes in a Multifunctional Carbon Shell
职业:外壁选择性功能化双壁碳纳米管——多功能碳壳中半导体纳米管的光学和电学性质
- 批准号:
1055514 - 财政年份:2011
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
相似国自然基金
北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
- 批准号:31470312
- 批准年份:2014
- 资助金额:85.0 万元
- 项目类别:面上项目
相似海外基金
QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
- 批准号:
2326628 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
- 批准号:
2326746 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
- 批准号:
2326801 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
- 批准号:
2326840 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
- 批准号:
2326758 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks
QuSeC-TAQS:用于光学原子钟的新型量子算法
- 批准号:
2326810 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
- 批准号:
2326838 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
- 批准号:
2326528 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
QuSeC-TAQS: Quantum Sensing Platform for Biomolecular Analytics
QuSeC-TAQS:用于生物分子分析的量子传感平台
- 批准号:
2326748 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
- 批准号:
2326767 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant














{{item.name}}会员




