Polylogarithms, Moduli Spaces, Mixed Motives, and L-Functions

多对数、模空间、混合动机和 L 函数

基本信息

  • 批准号:
    0400449
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-07-01 至 2008-06-30
  • 项目状态:
    已结题

项目摘要

Abstract for award DMS-0400449 of GoncharovProfessor Goncharov continues his study of the arithmetic aspects of polylogarithms and their generalizations, such as multiple polylogarithms and quantum polylogarithms, special values of L-functions of algebraic varieties, motivic fundamental groups, moduli spaces and higher quantum Teichmuller theory. Professor Goncharov investigates the structure of the motivic fundamental group of the projective line punctured at zero, infinity and all N-th roots of unity and its surprising relationship with the geometry and topology of modular varieties and mathematical physics. The arithmetic, side of the problem concerns the action of the absolute Galois group on the pro-l completion of the fundamental group of the projective line punctured as above. The analytic aspect of the story concerns the properties of multiple zeta values and their generalizations, multiple polylogarithms evaluated at N-th roots of unity. The relationship with the geometry of modular varieties as well as with mathematical physics are new tools to study this problem. Professor Goncharov investigates the higher quantum Teichmuller theory, which studies some new moduli spaces of G-local systems on a surface S, where G is a split reductive group, and its non-commutative deformations. This theory unites many different aspects of the representation theory which appear when S is simple but the group is general, and the classical Teichmuller theory corresponding to the case when G is the simplest possible, that is the group of two by two matrices, while S is general. The quantisation of these moduli spaces is governed by the motivic and quantum dilogarithms, and thus provides an example of fruitful relationship between mixed motives and mathematical physics. This research is in the area of arithmetic algebraic geometry, which is the branch of mathematics that is concerned with questions about the integers, but approaches them using the ideas coming from investigation of geometric shapes. It is a modern version of number theory, which is a very old subject, but is full of difficult problems and significant conjectures. The theory of systems of polynomial equations with integer coefficients is important for many applications including questions in cryptography and coding theory. Just recently, ideas from physics started to influence the subject. The proposer will use the latest techniques in number theory, algebraic geometry and mathematical physics to study the L-functions and their special values at integer points.
Goncharov教授继续研究多对数及其推广的算术方面,如多重多对数和量子多对数、代数变体的l函数的特殊值、动力基群、模空间和高量子Teichmuller理论。Goncharov教授研究了射影线的动机基本群的结构,这些射影线在零、无穷和所有n个单位根处穿刺,以及它与模变的几何和拓扑以及数学物理的惊人关系。问题的算术方面涉及绝对伽罗瓦群对上述穿透的投影线的基本群的亲- 1补全的作用。这个故事的分析方面涉及多个zeta值及其推广的性质,在单位的n个根处求值的多个多对数。与模变的几何关系以及与数学物理的关系是研究这一问题的新工具。Goncharov教授研究了高量子Teichmuller理论,该理论研究了曲面S上G局部系统的一些新的模空间及其非交换变形,其中G是一个分裂约化群。这个理论结合了表征理论的许多不同方面当S是简单的但群是一般的,经典的Teichmuller理论对应于G是最简单的情况,也就是2 × 2矩阵的群,而S是一般的。这些模空间的量子化是由动机和量子二对数控制的,从而提供了混合动机和数学物理之间富有成效的关系的一个例子。这项研究是在算术代数几何领域,这是数学的一个分支,涉及整数的问题,但使用来自几何形状研究的思想来接近它们。它是数论的现代版本,数论是一门非常古老的学科,但充满了难题和重要的猜想。整系数多项式方程组理论对于密码学和编码理论等许多应用都具有重要意义。就在最近,物理学的思想开始影响这个主题。申请者将运用数论、代数几何和数学物理的最新技术来研究l函数及其在整数点上的特殊值。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Goncharov其他文献

On Smoothness of the Green Function for the Complement of a Rarefied Cantor-Type Set
  • DOI:
    10.1007/s00365-010-9092-9
  • 发表时间:
    2010-04-08
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Muhammed Altun;Alexander Goncharov
  • 通讯作者:
    Alexander Goncharov
A tribute to Sasha Beilinson
  • DOI:
    10.1007/s00029-018-0399-x
  • 发表时间:
    2018-02-16
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Michael Finkelberg;Dennis Gaitsgory;Alexander Goncharov;Alexander Polishchuk
  • 通讯作者:
    Alexander Polishchuk
Orthogonal Polynomials on Generalized Julia Sets
  • DOI:
    10.1007/s11785-017-0669-1
  • 发表时间:
    2017-04-05
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Gökalp Alpan;Alexander Goncharov
  • 通讯作者:
    Alexander Goncharov
Donaldson–Thomas transformations of moduli spaces of G-local systems
  • DOI:
    10.1016/j.aim.2017.06.017
  • 发表时间:
    2018-03-17
  • 期刊:
  • 影响因子:
  • 作者:
    Alexander Goncharov;Linhui Shen
  • 通讯作者:
    Linhui Shen
The Galois group of the category of mixed Hodge–Tate structures
  • DOI:
    10.1007/s00029-018-0393-3
  • 发表时间:
    2018-02-09
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Alexander Goncharov;Guangyu Zhu
  • 通讯作者:
    Guangyu Zhu

Alexander Goncharov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Goncharov', 18)}}的其他基金

Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
  • 批准号:
    2400353
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
MRI: Acquisition of an advanced X-ray detector for static and dynamic synchrotron X-ray scattering studies of materials at extreme conditions at the Advanced Photon Source
MRI:购买先进的 X 射线探测器,用于在先进光子源的极端条件下对材料进行静态和动态同步加速器 X 射线散射研究
  • 批准号:
    2320309
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Quantum Geometry of Moduli Spaces and Motives
模空间和动机的量子几何
  • 批准号:
    2153059
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Thermal conductivity of lower mantle minerals and outer core alloys studied by combined fast pulsed laser and optical spectroscopy techniques
结合快速脉冲激光和光谱技术研究下地幔矿物和外核合金的热导率
  • 批准号:
    2049127
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Polylogarithms, Motives, L-Functions, and Quantum Geometry of Moduli Spaces
模空间的多对数、动机、L 函数和量子几何
  • 批准号:
    1900743
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Thermal conductivity of Deep Earth's materials studied by combined fast pulsed laser and optical spectroscopy techniques
通过快速脉冲激光和光谱技术相结合研究地球深部材料的热导率
  • 批准号:
    1763287
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Moduli Spaces, Motives, Periods, and Scattering Amplitudes
模空间、动机、周期和散射幅度
  • 批准号:
    1564385
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of integrated optical spectroscopy system at the Advanced Photon Source
MRI:在先进光子源处获取集成光谱系统
  • 批准号:
    1531583
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Thermal conductivity of Deep Earth's materials studied by fast pulsed laser techniques
通过快速脉冲激光技术研究地球深部材料的热导率
  • 批准号:
    1520648
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Development of an Ultrafast Laser Instrument for Probing Earth and Planetary Materials under Extreme Pressures and Temperatures
开发用于在极端压力和温度下探测地球和行星材料的超快激光仪器
  • 批准号:
    1128867
  • 财政年份:
    2013
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

高维代数流形Moduli空间和纤维丛的几何及其正特征代数簇相关问题
  • 批准号:
    11271070
  • 批准年份:
    2012
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目

相似海外基金

Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
  • 批准号:
    EP/Y037162/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
CAREER: Moduli Spaces, Fundamental Groups, and Asphericality
职业:模空间、基本群和非球面性
  • 批准号:
    2338485
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Novel Approaches to Geometry of Moduli Spaces
模空间几何的新方法
  • 批准号:
    2401387
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Analysis of singularities of extremal Riemann surfaces and Klein surfaces in moduli spaces
模空间中极值黎曼曲面和克莱因曲面的奇异性分析
  • 批准号:
    23K03138
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometry and dynamics in moduli spaces of surfaces
表面模空间中的几何和动力学
  • 批准号:
    2304840
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Moduli spaces of Galois representations
伽罗瓦表示的模空间
  • 批准号:
    2302619
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Describing Compactifications of Moduli Spaces of Varieties and Pairs.
LEAPS-MPS:描述簇和对模空间的紧化。
  • 批准号:
    2316749
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Study of moduli spaces of vacua of supersymmetric gauge theories by geometric representation theory
用几何表示理论研究超对称规范理论真空模空间
  • 批准号:
    23K03067
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
  • 批准号:
    23K12949
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Mapping class groups, diffeomorphism groups, and moduli spaces
职业:映射类群、微分同胚群和模空间
  • 批准号:
    2236705
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了