Polylogarithms, Moduli Spaces, Mixed Motives and L-Functions
多对数、模空间、混合动机和 L 函数
基本信息
- 批准号:0653721
- 负责人:
- 金额:$ 19.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI would like to study a Feynman integral description of the real mixed Hodge structure on a completions of the fundamental group of a complex curve. An especially interesting case is the universal modular curve, where the correlators of the Feynman integral generelise the Rankin-Selberg integrals. The PI wants to relate them to special values of L-functions of products of modular forms. He wants to find a similar Feynman integral description of the real mixed Hodge structure on rational homotopy type of a general complex variety. The PI wants to continue his study of the motivic fundamental groups of curves and their relationship with modular varieties, classical polylogarithms and their generalizations, special values of L-functions, mixed motives and motivic multiple L-values. Finally, he wants to continue his joint work with V.V. Fock on moduli spaces of local systems on 2D-surfaces higher Teichm\"uller spaces, and its quantization using the quantum dilogarithm, and relationship with representation theory and invariants of 3-folds.During the last years many ideas coming from Physics had a tremendous impact on pure Mathematics, and vice versa. Number Theory so far benefited from these insights significantly less then other areas of Mathematics. The PI wants to investigate several concrete problems of Number Theory, and more generally Arithmetic Algebraic Geometry, using Feynman integrls, quantum dilogarithm and quantum deformations, quantisation and other tools widely employed by Physisits. In particular he wants to show that certain very specific real numbers, related the set of complex solutions of an arbitrary system of polynomial equations with rational coefficients, and called periods of the rational homotopy type of an arbitrary variety over rationals, can be defined as correlators of Feynman integrals. He wants to find the so-called special values of L-functions among these numbers. The PI also hopes that this concrete example of a Feynman integral related to an arithmetic algebraic geometry problem will bring powerful methods of mordern arithmetic algebraic geometry to the study of Feynman integrals which appear in Physics.
PI想研究复曲线基本群的完备化上的真实的混合Hodge结构的Feynman积分描述。一个特别有趣的例子是泛模曲线,其中费曼积分的积分器一般 Rankin-Selberg积分PI希望将它们与模形式乘积的L函数的特殊值联系起来。他希望找到一般复簇的有理同伦型上的真实的混合Hodge结构的类似Feynman积分描述。PI希望继续他的研究motivic基本群的曲线和他们的关系与模品种,经典的多项式和他们的推广,特殊值的L-功能,混合动机和motivic多L-值。最后,他想继续他的联合工作与V. V.福克的模空间的本地系统的二维表面高Teichm\“uller空间,其量化使用的量子双对数,和关系与表示论和不变量的3倍。在过去几年中,许多想法来自物理学产生了巨大的影响,纯数学,反之亦然。到目前为止,数论从这些见解中获益明显少于数学的其他领域。PI希望研究数论的几个具体问题,更普遍的是算术代数几何,使用费曼积分,量子双对数和量子变形,量化和物理学广泛使用的其他工具。特别是他想表明,某些非常具体的真实的数字,有关的一套复杂的解决方案的任意系统的多项式方程的合理系数,并呼吁期间的合理同伦类型的任意品种的理性,可以被定义为principalators的费曼积分。他想在这些数字中找到L函数的所谓特殊值。PI还希望这个与算术代数几何问题相关的费曼积分的具体例子将为物理学中出现的费曼积分的研究带来现代算术代数几何的强大方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Goncharov其他文献
On Smoothness of the Green Function for the Complement of a Rarefied Cantor-Type Set
- DOI:
10.1007/s00365-010-9092-9 - 发表时间:
2010-04-08 - 期刊:
- 影响因子:1.200
- 作者:
Muhammed Altun;Alexander Goncharov - 通讯作者:
Alexander Goncharov
A tribute to Sasha Beilinson
- DOI:
10.1007/s00029-018-0399-x - 发表时间:
2018-02-16 - 期刊:
- 影响因子:1.200
- 作者:
Michael Finkelberg;Dennis Gaitsgory;Alexander Goncharov;Alexander Polishchuk - 通讯作者:
Alexander Polishchuk
Orthogonal Polynomials on Generalized Julia Sets
- DOI:
10.1007/s11785-017-0669-1 - 发表时间:
2017-04-05 - 期刊:
- 影响因子:0.800
- 作者:
Gökalp Alpan;Alexander Goncharov - 通讯作者:
Alexander Goncharov
Donaldson–Thomas transformations of moduli spaces of G-local systems
- DOI:
10.1016/j.aim.2017.06.017 - 发表时间:
2018-03-17 - 期刊:
- 影响因子:
- 作者:
Alexander Goncharov;Linhui Shen - 通讯作者:
Linhui Shen
The Galois group of the category of mixed Hodge–Tate structures
- DOI:
10.1007/s00029-018-0393-3 - 发表时间:
2018-02-09 - 期刊:
- 影响因子:1.200
- 作者:
Alexander Goncharov;Guangyu Zhu - 通讯作者:
Guangyu Zhu
Alexander Goncharov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Goncharov', 18)}}的其他基金
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
- 批准号:
2400353 - 财政年份:2024
- 资助金额:
$ 19.92万 - 项目类别:
Standard Grant
MRI: Acquisition of an advanced X-ray detector for static and dynamic synchrotron X-ray scattering studies of materials at extreme conditions at the Advanced Photon Source
MRI:购买先进的 X 射线探测器,用于在先进光子源的极端条件下对材料进行静态和动态同步加速器 X 射线散射研究
- 批准号:
2320309 - 财政年份:2023
- 资助金额:
$ 19.92万 - 项目类别:
Standard Grant
Quantum Geometry of Moduli Spaces and Motives
模空间和动机的量子几何
- 批准号:
2153059 - 财政年份:2022
- 资助金额:
$ 19.92万 - 项目类别:
Continuing Grant
Thermal conductivity of lower mantle minerals and outer core alloys studied by combined fast pulsed laser and optical spectroscopy techniques
结合快速脉冲激光和光谱技术研究下地幔矿物和外核合金的热导率
- 批准号:
2049127 - 财政年份:2021
- 资助金额:
$ 19.92万 - 项目类别:
Continuing Grant
Polylogarithms, Motives, L-Functions, and Quantum Geometry of Moduli Spaces
模空间的多对数、动机、L 函数和量子几何
- 批准号:
1900743 - 财政年份:2019
- 资助金额:
$ 19.92万 - 项目类别:
Standard Grant
Thermal conductivity of Deep Earth's materials studied by combined fast pulsed laser and optical spectroscopy techniques
通过快速脉冲激光和光谱技术相结合研究地球深部材料的热导率
- 批准号:
1763287 - 财政年份:2018
- 资助金额:
$ 19.92万 - 项目类别:
Continuing Grant
Moduli Spaces, Motives, Periods, and Scattering Amplitudes
模空间、动机、周期和散射幅度
- 批准号:
1564385 - 财政年份:2016
- 资助金额:
$ 19.92万 - 项目类别:
Continuing Grant
MRI: Acquisition of integrated optical spectroscopy system at the Advanced Photon Source
MRI:在先进光子源处获取集成光谱系统
- 批准号:
1531583 - 财政年份:2015
- 资助金额:
$ 19.92万 - 项目类别:
Standard Grant
Thermal conductivity of Deep Earth's materials studied by fast pulsed laser techniques
通过快速脉冲激光技术研究地球深部材料的热导率
- 批准号:
1520648 - 财政年份:2015
- 资助金额:
$ 19.92万 - 项目类别:
Continuing Grant
Development of an Ultrafast Laser Instrument for Probing Earth and Planetary Materials under Extreme Pressures and Temperatures
开发用于在极端压力和温度下探测地球和行星材料的超快激光仪器
- 批准号:
1128867 - 财政年份:2013
- 资助金额:
$ 19.92万 - 项目类别:
Standard Grant
相似国自然基金
高维代数流形Moduli空间和纤维丛的几何及其正特征代数簇相关问题
- 批准号:11271070
- 批准年份:2012
- 资助金额:50.0 万元
- 项目类别:面上项目
相似海外基金
Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
- 批准号:
EP/Y037162/1 - 财政年份:2024
- 资助金额:
$ 19.92万 - 项目类别:
Research Grant
CAREER: Moduli Spaces, Fundamental Groups, and Asphericality
职业:模空间、基本群和非球面性
- 批准号:
2338485 - 财政年份:2024
- 资助金额:
$ 19.92万 - 项目类别:
Continuing Grant
Novel Approaches to Geometry of Moduli Spaces
模空间几何的新方法
- 批准号:
2401387 - 财政年份:2024
- 资助金额:
$ 19.92万 - 项目类别:
Standard Grant
Analysis of singularities of extremal Riemann surfaces and Klein surfaces in moduli spaces
模空间中极值黎曼曲面和克莱因曲面的奇异性分析
- 批准号:
23K03138 - 财政年份:2023
- 资助金额:
$ 19.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometry and dynamics in moduli spaces of surfaces
表面模空间中的几何和动力学
- 批准号:
2304840 - 财政年份:2023
- 资助金额:
$ 19.92万 - 项目类别:
Standard Grant
Moduli spaces of Galois representations
伽罗瓦表示的模空间
- 批准号:
2302619 - 财政年份:2023
- 资助金额:
$ 19.92万 - 项目类别:
Standard Grant
LEAPS-MPS: Describing Compactifications of Moduli Spaces of Varieties and Pairs.
LEAPS-MPS:描述簇和对模空间的紧化。
- 批准号:
2316749 - 财政年份:2023
- 资助金额:
$ 19.92万 - 项目类别:
Standard Grant
Study of moduli spaces of vacua of supersymmetric gauge theories by geometric representation theory
用几何表示理论研究超对称规范理论真空模空间
- 批准号:
23K03067 - 财政年份:2023
- 资助金额:
$ 19.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
- 批准号:
23K12949 - 财政年份:2023
- 资助金额:
$ 19.92万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Mapping class groups, diffeomorphism groups, and moduli spaces
职业:映射类群、微分同胚群和模空间
- 批准号:
2236705 - 财政年份:2023
- 资助金额:
$ 19.92万 - 项目类别:
Continuing Grant