Additive Nanomanufacturing of Multifunctional Materials and Hybrid Structures
多功能材料和混合结构的增材纳米制造
基本信息
- 批准号:1923363
- 负责人:
- 金额:$ 39.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant supports research to fill the scientific gap pertaining to additive manufacturing of multifunctional materials and hybrid structures for applications spanning from electronics and sensing to quantum materials and devices. While a variety of additive manufacturing processes are capable of creating complex macroscopic large-scale single-material objects, printing of nano-scale multifunctional materials, e.g., piezoelectric, ferromagnetic, composites, and hybrid devices is challenging due to limited source materials and lack of suitable fabrication systems. This award supports fundamental research to provide needed knowledge for creating a platform that is capable of generating, delivering, and sintering a variety of metallic, semiconducting, insulating as well as multifunctional nanoparticles on demand, to fabricate durable and reliable hybrid structures and devices layer-by-layer. The unique ability to generate such materials and devices directly on conformal surfaces makes this approach an attractive solution for several applications in energy, biomedical, automotive and aerospace industries, which ultimately benefits the U.S. economy. This research creates synergy amongst several disciplines including manufacturing, materials science, mechanics, and electronics. The multi-disciplinary approach helps broaden the participation of a diverse group of students in research and positively impacts engineering education and skilled workforce development. This research aims to establish the experimental foundation underpinning additive nanomanufacturing (ANM), overcoming the existing barriers in fabricating multifunctional hybrid structures and devices with nanoscale features and capable of tolerating service environments. The research employs nonequilibrium processes, pulsed laser ablation (PLA) and laser sintering, to control the synthesis and assembly of various multifunctional nanoparticle building-blocks into hybrid structures and devices that possess complex functionalities. The research team aims to understand the process of formation and identify the structures of functional building-blocks manufactured by in-situ PLA process and explore their real-time laser sintering/crystallization into larger structures in a layer-by-layer fashion. Specifically, this research is designed to elucidate i) how nanoparticles form in the gas-phase by atmospheric pressure PLA process, ii) how these nanoparticles interact with each other, iii) how their phases and structures evolve under the laser sintering conditions, and iv) what the emerging process-structure-property relationships are that enable fabrication of durable hybrid structures with enhanced performance. Upon establishing the process window for ANM of barium titanate (BTO) and indium tin oxide (ITO), their hybrid structures and devices are printed on a flexible substrate to measure their mechanical, electrical, and piezoelectric properties and ensure their functionality and structural integrity. This research unveils a new manufacturing concept that enables the fabrication of multifunctional materials and hybrid structures employing a 'design for application' approach to meet both structural and functional requirements.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这笔赠款支持研究,以填补与多功能材料和混合结构的添加制造有关的科学空白,应用范围从电子和传感到量子材料和设备。虽然各种添加剂制造工艺能够制造复杂的宏观大型单一材料对象,但由于来源有限和缺乏合适的制造系统,纳米级多功能材料(如压电、铁磁、复合材料和混合器件)的打印具有挑战性。该奖项支持基础研究,以提供所需的知识,以创造一个能够按需产生、输送和烧结各种金属、半导体、绝缘以及多功能纳米颗粒的平台,以逐层制造耐用和可靠的混合结构和设备。直接在保形表面上产生这种材料和器件的独特能力使这种方法成为能源、生物医学、汽车和航空航天行业中几个应用的有吸引力的解决方案,最终使美国经济受益。这项研究在包括制造、材料科学、机械和电子在内的几个学科之间产生了协同效应。多学科方法有助于扩大不同学生群体对研究的参与,并对工程教育和熟练劳动力的发展产生积极影响。这项研究旨在为支持添加剂纳米制造(ANM)奠定实验基础,克服在制造具有纳米级特征和能够容忍服务环境的多功能混合结构和器件方面的现有障碍。该研究采用脉冲激光烧蚀和激光烧结等非平衡工艺,控制各种多功能纳米颗粒积木的合成和组装,形成具有复杂功能的杂化结构和器件。该研究小组的目标是了解原位聚乳酸工艺制造的功能积木的形成过程和确定其结构,并以逐层的方式探索其实时激光烧结/结晶成更大的结构。具体地说,这项研究旨在阐明i)纳米颗粒是如何通过常压聚乳酸工艺在气相中形成的,ii)这些纳米颗粒是如何相互作用的,iii)它们的相和结构在激光烧结条件下是如何演变的,以及iv)新出现的工艺-结构-性能关系是什么,能够制造出性能更好的耐用混合结构。在建立了钛酸钡(BTO)和氧化铟锡(ITO)的ANM工艺窗口后,将它们的混合结构和器件印刷在柔性基板上,以测量它们的机械、电气和压电性能,并确保它们的功能性和结构完整性。这项研究揭示了一种新的制造概念,使多功能材料和混合结构的制造能够采用“为应用而设计”的方法来满足结构和功能要求。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Additive Nanomanufacturing of Multifunctional Materials and Patterned Structures: A Novel Laser‐Based Dry Printing Process
- DOI:10.1002/admt.202001260
- 发表时间:2021-03
- 期刊:
- 影响因子:6.8
- 作者:Zabihollah Ahmadi;Seungjong Lee;R. Unocic;N. Shamsaei;M. Mahjouri‐Samani
- 通讯作者:Zabihollah Ahmadi;Seungjong Lee;R. Unocic;N. Shamsaei;M. Mahjouri‐Samani
Gas-Phase Formation of Highly Luminescent 2D GaSe Nanoparticle Ensembles in a Nonequilibrium Laser Ablation Process
- DOI:10.3390/nano10050908
- 发表时间:2020-05-01
- 期刊:
- 影响因子:5.3
- 作者:Elafandi, Salah;Ahmadi, Zabihollah;Mahjouri-Samani, Masoud
- 通讯作者:Mahjouri-Samani, Masoud
In-situ tension investigation of additively manufactured silver lines on flexible substrates
- DOI:10.1016/j.addlet.2023.100171
- 发表时间:2023-12
- 期刊:
- 影响因子:0
- 作者:Seungjong Lee;Zabihollah Ahmadi;Mikyle Paul;M. Mahjouri‐Samani;Shuai Shao;N. Shamsaei
- 通讯作者:Seungjong Lee;Zabihollah Ahmadi;Mikyle Paul;M. Mahjouri‐Samani;Shuai Shao;N. Shamsaei
Dry Printing and Additive Nanomanufacturing of Flexible Hybrid Electronics and Sensors
- DOI:10.1002/admi.202102569
- 发表时间:2022-02-24
- 期刊:
- 影响因子:5.4
- 作者:Ahmadi, Zabihollah;Lee, Seungjong;Mahjouri-Samani, Masoud
- 通讯作者:Mahjouri-Samani, Masoud
Inkless Multimaterial Printing Flexible Electronics by Directed Laser Deposition at Nano- and Microscale
- DOI:10.1021/acsanm.3c01814
- 发表时间:2023-08
- 期刊:
- 影响因子:5.9
- 作者:Zabihollah Ahmadi;Aarsh Patel;A. Taba;S. Jaiswal;Seungjong Lee;N. Shamsaei;M. Mahjouri‐Samani
- 通讯作者:Zabihollah Ahmadi;Aarsh Patel;A. Taba;S. Jaiswal;Seungjong Lee;N. Shamsaei;M. Mahjouri‐Samani
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Masoud Mahjouri-Samani其他文献
Masoud Mahjouri-Samani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Masoud Mahjouri-Samani', 18)}}的其他基金
FMSG: Eco: Multimaterial Manufacturing of Eco-Friendly and Biodegradable Paper-Based Flexible Hybrid Electronics
FMSG:生态:环保且可生物降解的纸基柔性混合电子产品的多材料制造
- 批准号:
2134024 - 财政年份:2021
- 资助金额:
$ 39.89万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315997 - 财政年份:2024
- 资助金额:
$ 39.89万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315996 - 财政年份:2024
- 资助金额:
$ 39.89万 - 项目类别:
Standard Grant
Ionic liquids for subtractive and additive nanomanufacturing
用于减材和增材纳米制造的离子液体
- 批准号:
MR/Y034376/1 - 财政年份:2024
- 资助金额:
$ 39.89万 - 项目类别:
Fellowship
High yield adaptive laser nanomanufacturing system for photonic devices
用于光子器件的高产量自适应激光纳米制造系统
- 批准号:
LP210100467 - 财政年份:2023
- 资助金额:
$ 39.89万 - 项目类别:
Linkage Projects
Mechanical nanolithography without solvents - a step towards sustainable nanomanufacturing
无溶剂机械纳米光刻——迈向可持续纳米制造的一步
- 批准号:
EP/W034387/1 - 财政年份:2023
- 资助金额:
$ 39.89万 - 项目类别:
Research Grant
Collaborative Research: Scalable Nanomanufacturing Platform for Area-Selective Atomic Layer Deposition of Components for Ultra-Efficient Functional Devices
合作研究:用于超高效功能器件组件的区域选择性原子层沉积的可扩展纳米制造平台
- 批准号:
2225900 - 财政年份:2023
- 资助金额:
$ 39.89万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Nanomanufacturing Platform for Area-Selective Atomic Layer Deposition of Components for Ultra-Efficient Functional Devices
合作研究:用于超高效功能器件组件的区域选择性原子层沉积的可扩展纳米制造平台
- 批准号:
2225896 - 财政年份:2023
- 资助金额:
$ 39.89万 - 项目类别:
Standard Grant
REU Site: Nanomanufacturing of Emerging 2D Materials and Devices
REU 网站:新兴 2D 材料和器件的纳米制造
- 批准号:
2244201 - 财政年份:2023
- 资助金额:
$ 39.89万 - 项目类别:
Standard Grant
Creep-Based Nanomanufacturing of Crystalline Metals and Alloys
基于蠕变的晶体金属和合金纳米制造
- 批准号:
2212195 - 财政年份:2023
- 资助金额:
$ 39.89万 - 项目类别:
Standard Grant
Ice Lithography – A Novel Nanomanufacturing Process
冰光刻 — 一种新颖的纳米制造工艺
- 批准号:
2314347 - 财政年份:2023
- 资助金额:
$ 39.89万 - 项目类别:
Standard Grant














{{item.name}}会员




