QII-TAQS: Characterizing and Utilizing 2D van der Wals Materials with Superconducting Qubits

QII-TAQS:利用超导量子位表征和利用 2D van der Wals 材料

基本信息

  • 批准号:
    1936263
  • 负责人:
  • 金额:
    $ 199.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Quantum information technologies hold the promise to revolutionize sensing, communication, and computing. Realizing this promise requires new approaches for creating "quantum-ready" materials and manufacturing processes. The research part of this project introduces a new class of materials called "van der Waals heterostructures" to the manufacturing of high-quality devices for application to quantum computation. Van der Waals heterostructures are a family of layered, two-dimensional (flat) materials that - depending on their design - may assume a wide range of properties, such as being a normal metal like copper, a superconductor like aluminum, or an insulator like aluminum oxide. The advantage of these materials is that they are crystalline and, therefore, have few (if any) defects. The atomically sharp interfaces of these heterostructures also provide a materials platform to build novel electronic devices. Defects limit the utility of today's quantum devices, and this research aims to improve quantum device performance by leveraging their crystallinity. The research includes characterization of the electrical and optical properties of van der Waals heterostructures, as well as their use to manufacture and test a range of quantum devices useful for quantum information processing. The project also contributes to the training of a new generation of "quantum engineers" who will translate this work into industrial settings. The investigators are committed to the mentoring and training of undergraduates, graduate students, and postdoctoral associates - the next generation of science and engineering leaders - as well as outreach to those already in the workforce and other members of the public. This project addresses the characterization of van der Waals (vdW) heterostructures - a family of layered, crystalline, two-dimensional (2D) quantum materials including semi-metals, insulators, semiconductors, ferromagnets, superconductors, and topological insulators - and their application to quantum information technologies. While vdW materials have been extensively studied via DC transport, few experiments have probed their quantum properties in the microwave and optical regimes relevant for quantum technology applications. In this work, the research team investigates 2D vdW materials using coherent optical techniques spanning microwaves, terahertz, and optical frequencies, including direct excitation and the use of circuit quantum electrodynamics with superconducting resonators to mediate fast, ultra-sensitive pump-probe experiments and detection. The team aggregates complementary expertise in vdW materials, high-quality-factor superconducting resonators, high coherence superconducting qubits, and their integration with vdW heterostructures. Fabrication of these devices leverages a unique, state-of-the-art hermetic device foundry developed in-house, as well as state of-the-art superconducting resonator and qubit fabrication. Measurements are performed at millikelvin temperature in cryogen-free dilution refrigerators with microwave and optical access. The research targets transformative quantum information applications, including high-coherence qubits, small-form-factor microwave components, and the study of quantum spin models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子信息技术有望彻底改变传感、通信和计算。实现这一承诺需要新的方法来创造“量子就绪”材料和制造工艺。该项目的研究部分将一种称为“货车德瓦尔斯异质结构”的新材料引入到高质量量子计算设备的制造中。货车范德华异质结构是一类分层的二维(平面)材料,根据其设计,它们可能具有广泛的性质,例如是铜等普通金属、铝等超导体或绝缘体。氧化铝。这些材料的优点是它们是结晶的,因此几乎没有(如果有的话)缺陷。这些异质结构的原子级尖锐界面也为构建新型电子器件提供了材料平台。缺陷限制了当今量子器件的实用性,这项研究旨在通过利用它们的结晶度来提高量子器件的性能。该研究包括表征货车德瓦尔斯异质结构的电学和光学特性,以及它们用于制造和测试一系列用于量子信息处理的量子设备。该项目还有助于培养新一代的“量子工程师”,他们将把这项工作转化为工业环境。研究人员致力于指导和培训本科生,研究生和博士后助理-下一代科学和工程领导者-以及与那些已经在劳动力和其他公众成员的联系。该项目致力于货车德瓦耳斯(vdW)异质结构的表征-一系列层状,晶体,二维(2D)量子材料,包括半金属,绝缘体,半导体,铁磁体,超导体和拓扑绝缘体-及其在量子信息技术中的应用。虽然VDW材料已经通过DC传输进行了广泛的研究,但很少有实验探索它们在与量子技术应用相关的微波和光学领域的量子特性。在这项工作中,研究小组使用跨越微波,太赫兹和光学频率的相干光学技术研究2D vdW材料,包括直接激发和使用超导谐振器的电路量子电动力学来介导快速,超灵敏的泵浦探测实验和检测。该团队汇集了vdW材料,高品质因数超导谐振器,高相干超导量子比特及其与vdW异质结构集成的互补专业知识。这些器件的制造利用了内部开发的独特的、最先进的密封器件铸造厂,以及最先进的超导谐振器和量子比特制造。测量是在毫开尔文温度下进行的无冷冻剂稀释冰箱微波和光学访问。该研究的目标是变革性的量子信息应用,包括高相干量子比特,小尺寸微波组件和量子自旋模型的研究。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cyclotron resonance overtones and near-field magnetoabsorption via terahertz Bernstein modes in graphene
  • DOI:
    10.1038/s41567-021-01494-8
  • 发表时间:
    2022-02-07
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    Bandurin, D. A.;Monch, E.;Ganichev, S. D.
  • 通讯作者:
    Ganichev, S. D.
Observation of terahertz-induced magnetooscillations in graphene.
石墨烯中太赫兹引起的磁振荡的观察
  • DOI:
    10.1021/acs.nanolett.0c01918
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    E. Mönch;D. A. Bandurin;I. A. Dmitriev;I.Y. Phinney;I. Yahniuk;T. Taniguchi;K. Watanabe;P. Jarillo-Herrero;S. D. Ganichev
  • 通讯作者:
    S. D. Ganichev
Andreev Reflection in the Fractional Quantum Hall State
  • DOI:
    10.1103/physrevx.12.021057
  • 发表时间:
    2022-06-14
  • 期刊:
  • 影响因子:
    12.5
  • 作者:
    Gul, Onder;Ronen, Yuval;Kim, Philip
  • 通讯作者:
    Kim, Philip
Single-photon detection using high-temperature superconductors
  • DOI:
    10.1038/s41565-023-01325-2
  • 发表时间:
    2023-03-20
  • 期刊:
  • 影响因子:
    38.3
  • 作者:
    Charaev, I.;Bandurin, D. A.;Berggren, K. K.
  • 通讯作者:
    Berggren, K. K.
Hexagonal boron nitride as a low-loss dielectric for superconducting quantum circuits and qubits
  • DOI:
    10.1038/s41563-021-01187-w
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    41.2
  • 作者:
    J. Wang;M. Yamoah;Qing Li;Amir H. Karamlou;T. Dinh;B. Kannan;Jochen Braumueller;David K. Kim;A. Melville;Sarah E. Muschinske;B. Niedzielski;K. Serniak;Youngkyu Sung;R. Winik;J. Yoder;M. Schwartz;Kenji Watanabe;T. Taniguchi;T. Orlando;S. Gustavsson;P. Jarillo-Herrero;W. Oliver
  • 通讯作者:
    J. Wang;M. Yamoah;Qing Li;Amir H. Karamlou;T. Dinh;B. Kannan;Jochen Braumueller;David K. Kim;A. Melville;Sarah E. Muschinske;B. Niedzielski;K. Serniak;Youngkyu Sung;R. Winik;J. Yoder;M. Schwartz;Kenji Watanabe;T. Taniguchi;T. Orlando;S. Gustavsson;P. Jarillo-Herrero;W. Oliver
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Oliver其他文献

William Oliver的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Oliver', 18)}}的其他基金

You Teach Physical Science: Noyce Scholars Enhancing Technical Capacity in Arkansas
您教授物理科学:诺伊斯学者增强阿肯色州的技术能力
  • 批准号:
    1239804
  • 财政年份:
    2012
  • 资助金额:
    $ 199.2万
  • 项目类别:
    Standard Grant
REU Site: Modern Optics and Optical Materials
REU 网站:现代光学和光学材料
  • 批准号:
    0552944
  • 财政年份:
    2006
  • 资助金额:
    $ 199.2万
  • 项目类别:
    Continuing Grant
Incoherent Scatter Radar Studies of Hot Oxygen
热氧的非相干散射雷达研究
  • 批准号:
    0327625
  • 财政年份:
    2003
  • 资助金额:
    $ 199.2万
  • 项目类别:
    Continuing grant
REU Site: Modern Optics and Optical Materials
REU 网站:现代光学和光学材料
  • 批准号:
    0244180
  • 财政年份:
    2003
  • 资助金额:
    $ 199.2万
  • 项目类别:
    Continuing Grant
Upper Atmosphere/Ionosphere Studies with the Middle and Upper (MU) Atmosphere Radar
利用中高层 (MU) 大气雷达进行高层大气/电离层研究
  • 批准号:
    0001265
  • 财政年份:
    2000
  • 资助金额:
    $ 199.2万
  • 项目类别:
    Continuing grant
Upper-Atmosphere/Ionosphere Studies with the MU Radar
使用 MU 雷达进行高层大气/电离层研究
  • 批准号:
    9700162
  • 财政年份:
    1997
  • 资助金额:
    $ 199.2万
  • 项目类别:
    Continuing Grant
Optical, Structural, and Dynamic Properties of Viscous Liquids, Glasses, and Crystalline Materials Under Extremes of Pressure and Temperature
极端压力和温度下粘性液体、玻璃和晶体材料的光学、结构和动态特性
  • 批准号:
    9624833
  • 财政年份:
    1996
  • 资助金额:
    $ 199.2万
  • 项目类别:
    Continuing Grant
Upper-Atmospheric/Ionosphere Studies with the MU Radar
使用 MU 雷达进行高层大气/电离层研究
  • 批准号:
    9321491
  • 财政年份:
    1994
  • 资助金额:
    $ 199.2万
  • 项目类别:
    Continuing grant
Growth and Characterization of Optical Materials
光学材料的生长和表征
  • 批准号:
    9452409
  • 财政年份:
    1994
  • 资助金额:
    $ 199.2万
  • 项目类别:
    Standard Grant
CEDAR: Longitudinal Variations in the Upper Atmosphere and Ionosphere Derived From Radar Measurements in the American and Asian Sectors
CEDAR:美国和亚洲地区雷达测量得出的高层大气和电离层的纵向变化
  • 批准号:
    9201700
  • 财政年份:
    1993
  • 资助金额:
    $ 199.2万
  • 项目类别:
    Standard Grant

相似国自然基金

北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
  • 批准号:
    31470312
  • 批准年份:
    2014
  • 资助金额:
    85.0 万元
  • 项目类别:
    面上项目

相似海外基金

QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
  • 批准号:
    2326628
  • 财政年份:
    2023
  • 资助金额:
    $ 199.2万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
  • 批准号:
    2326746
  • 财政年份:
    2023
  • 资助金额:
    $ 199.2万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
  • 批准号:
    2326801
  • 财政年份:
    2023
  • 资助金额:
    $ 199.2万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
  • 批准号:
    2326840
  • 财政年份:
    2023
  • 资助金额:
    $ 199.2万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
  • 批准号:
    2326758
  • 财政年份:
    2023
  • 资助金额:
    $ 199.2万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks
QuSeC-TAQS:用于光学原子钟的新型量子算法
  • 批准号:
    2326810
  • 财政年份:
    2023
  • 资助金额:
    $ 199.2万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
  • 批准号:
    2326838
  • 财政年份:
    2023
  • 资助金额:
    $ 199.2万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
  • 批准号:
    2326528
  • 财政年份:
    2023
  • 资助金额:
    $ 199.2万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Quantum Sensing Platform for Biomolecular Analytics
QuSeC-TAQS:用于生物分子分析的量子传感平台
  • 批准号:
    2326748
  • 财政年份:
    2023
  • 资助金额:
    $ 199.2万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
  • 批准号:
    2326767
  • 财政年份:
    2023
  • 资助金额:
    $ 199.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了