SHF: Medium: Software Engineering for Hardware Errors
SHF:中:针对硬件错误的软件工程
基本信息
- 批准号:1956374
- 负责人:
- 金额:$ 120万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Silicon technology underlying the growth in computer performance and functionality over the last several decades is now reaching fundamental physical limits. As this happens, computer hardware is becoming increasingly susceptible to errors. Traditional reliability solutions to avoid such errors rely on indiscriminate redundancy, which is too expensive for emerging systems. A promising approach is to rely on software to provide acceptable resiliency to hardware errors at a much lower cost by using selective redundancy only where needed. A key obstacle to practical adoption of software-driven solutions is that some hardware errors may escape the software stack, leading to unacceptable data corruptions. It is therefore critical to develop analysis techniques that can identify software regions that are potentially vulnerable to hardware errors, and low-cost mitigation or hardening techniques that can make such software regions resilient to data corruption.This project is to develop a principled and scalable approach to resiliency analysis and hardening for software. The project is based on two observations. First, resiliency analysis is analogous to the problem of software testing, which seeks to find software bugs. Second, resiliency hardening is analogous to software debugging and repair. The work will leverage methods previously used for software testing and debugging to improve resiliency analysis and hardening for diverse computer architectures. It will (1) explore new testing-based techniques to improve the quality and diversity of test inputs used for resiliency analysis; (2) leverage program-analysis and machine-learning methods to make resiliency analysis faster and more accurate for diverse computer architectures; (3) develop formal specifications, optimization strategies, and machine-learning-based methods to harden software using low-cost checkers; and (4) develop techniques to apply resiliency solutions in an incremental and compositional way. The goal is to make the promise of low-cost software-driven approaches to hardware reliability practical by incorporating resiliency analysis and hardening within a modern software-development workflow. The project offers the opportunity for multidisciplinary training of students in the fields of computer architecture, software testing, program analysis, and machine learning, as well as broadening participation in computing through increased recruitment and retention efforts for women and under-represented minorities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去几十年里,支撑计算机性能和功能增长的硅技术现在正达到基本的物理极限。随着这种情况的发生,计算机硬件变得越来越容易出错。避免此类错误的传统可靠性解决方案依赖于不分青红皂白的冗余,这对新兴系统来说过于昂贵。一种有前景的方法是依靠软件以低得多的成本提供对硬件错误的可接受恢复能力,只在需要的地方使用选择性冗余。实际采用软件驱动的解决方案的一个关键障碍是,一些硬件错误可能会逃脱软件堆栈,导致不可接受的数据损坏。因此,关键是开发能够识别潜在易受硬件错误影响的软件区域的分析技术,以及能够使这些软件区域对数据损坏具有弹性的低成本缓解或加固技术。该项目旨在开发一种原则性和可扩展性的方法来对软件进行弹性分析和加固。该项目基于两个观察结果。首先,弹性分析类似于软件测试的问题,软件测试试图找到软件错误。第二,弹性加固类似于软件调试和修复。这项工作将利用以前用于软件测试和调试的方法来改进对不同计算机体系结构的弹性分析和加固。它将(1)探索新的基于测试的技术,以提高用于弹性分析的测试输入的质量和多样性;(2)利用程序分析和机器学习方法,使不同计算机体系结构的弹性分析更快、更准确;(3)开发正式规范、优化策略和基于机器学习的方法,以使用低成本检查器强化软件;以及(4)开发技术,以增量和组合的方式应用弹性解决方案。其目标是通过将弹性分析和强化整合到现代软件开发工作流程中,使低成本软件驱动的硬件可靠性方法的承诺变得切实可行。该项目提供了在计算机体系结构、软件测试、程序分析和机器学习领域对学生进行多学科培训的机会,并通过增加对妇女和代表性不足的少数民族的招聘和保留努力,扩大对计算的参与。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Proof transfer for fast certification of multiple approximate neural networks
- DOI:10.1145/3527319
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:Shubham Ugare;Gagandeep Singh
- 通讯作者:Shubham Ugare;Gagandeep Singh
Fault Localization for Declarative Models in Alloy
- DOI:10.1109/issre5003.2020.00044
- 发表时间:2018-07
- 期刊:
- 影响因子:0
- 作者:Kaiyuan Wang;Allison Sullivan;D. Marinov;S. Khurshid
- 通讯作者:Kaiyuan Wang;Allison Sullivan;D. Marinov;S. Khurshid
Preempting Flaky Tests via Non-Idempotent-Outcome Tests
- DOI:10.1145/3510003.3510170
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Anjiang Wei;Pu Yi;Zhengxi Li;Tao Xie;D. Marinov;Wing Lam
- 通讯作者:Anjiang Wei;Pu Yi;Zhengxi Li;Tao Xie;D. Marinov;Wing Lam
AQUA: Automated Quantized Inference for Probabilistic Programs
AQUA:概率程序的自动量化推理
- DOI:10.1007/978-3-030-88885-5_16
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Huang, Zixin;Dutta, Saikat;Misailovic, Sasa
- 通讯作者:Misailovic, Sasa
SixthSense: Debugging Convergence Problems in Probabilistic Programs via Program Representation Learning
SixthSense:通过程序表示学习调试概率程序中的收敛问题
- DOI:10.1007/978-3-030-99429-7_7
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Dutta, Saikat;Huang, Zixin;Misailovic, Sasa
- 通讯作者:Misailovic, Sasa
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarita Adve其他文献
Under-canopy dataset for advancing simultaneous localization and mapping in agricultural robotics
用于推进农业机器人同步定位和绘图的树冠下数据集
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
José Cuarán;Andres Eduardo Baquero Velasquez;Mateus Valverde Gasparino;N. Uppalapati;A. N. Sivakumar;Justin Wasserman;Muhammad Huzaifa;Sarita Adve;Girish Chowdhary - 通讯作者:
Girish Chowdhary
FastFlip: Compositional Error Injection Analysis
FastFlip:组合错误注入分析
- DOI:
10.48550/arxiv.2403.13989 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Keyur Joshi;Rahul Singh;Tommaso Bassetto;Sarita Adve;Darko Marinov;Sasa Misailovic - 通讯作者:
Sasa Misailovic
Sarita Adve的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarita Adve', 18)}}的其他基金
Collaborative Research: PPoSS: LARGE: Scalable Specialization in Distributed Edge-Cloud Systems – The Extended Reality Case
协作研究:PPoSS:大型:分布式边缘云系统的可扩展专业化 — 扩展现实案例
- 批准号:
2217144 - 财政年份:2022
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
CCRI: New: An Open End-to-End Extended Reality System Infrastructure: Enabling Domain-Specific Edge Systems Research
CCRI:新:开放的端到端扩展现实系统基础设施:支持特定领域的边缘系统研究
- 批准号:
2120464 - 财政年份:2021
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
SHF: Small: Hardware-Software Co-Designed Coherence: A Complete Coherence Solution for Performance-, Energy-, and Complexity-Efficiency
SHF:小型:硬件-软件协同设计的一致性:针对性能、能源和复杂性效率的完整一致性解决方案
- 批准号:
1619245 - 财政年份:2016
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
SHF: Small: Software-Driven Hardware Resiliency
SHF:小型:软件驱动的硬件弹性
- 批准号:
1320941 - 财政年份:2013
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
SHF: Small: DeNovo: Rethinking Hardware for Disciplined Parallelism
SHF:小型:DeNovo:重新思考硬件以实现严格的并行性
- 批准号:
1018796 - 财政年份:2010
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
CPA-CSA-T: Low Cost and Comprehensive Hardware Reliability
CPA-CSA-T:低成本和全面的硬件可靠性
- 批准号:
0811693 - 财政年份:2008
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Lifetime Reliability Aware Microprocessors
终生可靠性感知微处理器
- 批准号:
0541383 - 财政年份:2006
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
ITR: Collaborative Hardware-Software Adaptation for Multimedia Applications
ITR:多媒体应用的软硬件协同适配
- 批准号:
0205638 - 财政年份:2002
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Using Simultaneous Multithreaded Processors for Soft Real-Time Applications
使用同步多线程处理器进行软实时应用
- 批准号:
0209198 - 财政年份:2002
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
CISE Research Resources: Programming Environments and Applications for Clusters and Grids
CISE 研究资源:集群和网格的编程环境和应用程序
- 批准号:
0224453 - 财政年份:2002
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: SHF: Medium: Improving Software Quality by Automatically Reproducing Failures from Bug Reports
协作研究:SHF:中:通过自动重现错误报告中的故障来提高软件质量
- 批准号:
2403747 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Learning Semantics of Code To Automate Software Assurance Tasks
协作研究:SHF:媒介:学习代码语义以自动化软件保障任务
- 批准号:
2313054 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: A hardware-software co-design approach for high-performance in-memory analytic data processing
协作研究:SHF:中:用于高性能内存分析数据处理的硬件软件协同设计方法
- 批准号:
2312741 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Natural Language Models with Execution Data for Software Testing
协作研究:SHF:媒介:用于软件测试的具有执行数据的自然语言模型
- 批准号:
2313028 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Hardware and Software Support for Memory-Centric Computing Systems
协作研究:SHF:中:以内存为中心的计算系统的硬件和软件支持
- 批准号:
2312507 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Hardware and Software Support for Memory-Centric Computing Systems
协作研究:SHF:中:以内存为中心的计算系统的硬件和软件支持
- 批准号:
2312508 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: A hardware-software co-design approach for high-performance in-memory analytic data processing
协作研究:SHF:中:用于高性能内存分析数据处理的硬件软件协同设计方法
- 批准号:
2312739 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
SHF: Medium: Efficient and Scalable Pattern Matching via Hardware-Software Co-Design
SHF:中:通过软硬件协同设计实现高效且可扩展的模式匹配
- 批准号:
2313062 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Natural Language Models with Execution Data for Software Testing
协作研究:SHF:媒介:用于软件测试的具有执行数据的自然语言模型
- 批准号:
2313027 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: A hardware-software co-design approach for high-performance in-memory analytic data processing
协作研究:SHF:中:用于高性能内存分析数据处理的硬件软件协同设计方法
- 批准号:
2312740 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Standard Grant