III: Small: Fair Decision Making by Consensus: Interactive Bias Mitigation Technology
III:小:共识公平决策:交互式偏差缓解技术
基本信息
- 批准号:2007932
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As the use of AI becomes ever more prevalent in socio-technical systems, people making decisions frequently collaborate not only with each other, but also with automated technologies to make judgements that have real and lasting impact on other people's lives. This has serious implications for the equitable and fair treatment of historically disadvantaged groups, due to the potential interplay between implicit bias analysts may suffer from and algorithmic bias inadvertently embedded in AI systems. There is a strong imperative to address open problems surrounding interactive decision support systems with effective bias mitigation technologies to ensure fair outcomes. This project, named AEQUITAS to reflect the concept of justice and fairness, investigates the application of contemporary notions of group fairness to the classic task of aggregating multiple rankings of candidates to derive an overall fair consensus decision. The resulting methods and tools help decision makers mitigate both the implicit bias they suffer from as well as expose algorithmic bias inadvertently embedded in automated AI ranking algorithms. This technology will have impactful applications in domains from hiring, lending, to education, where decisions often made by committee with input from multiple decision makers must have unbiased outcomes. Fair access for historically disadvantaged groups of people to potentially life changing opportunities such as jobs, loans, and educational resources is a potential game changing societal outcome of the AEQUITAS project. Further, the integration of project activities with the training of a future STEM workforce with focus on female and underrepresented students via the WPI Data Science REU summer site and the interdisciplinary degree programs in Data Science at WPI also represent significant broader impact.AEQUITAS promises to break fundamental new ground in ethical AI by providing the first interactive consensus-based bias mitigation solution. New insights are expected to be gained into the ways in which unfair bias against underprivileged groups may be introduced by a consensus building process and manifest itself in a final ranking. As foundation of AEQUITAS, the fair rank aggregation problem is modeled using a constraint optimization formulation that captures prevalent group fairness criteria. This new fairness-preserving optimization model ensures measures of fairness for the candidates being ranked while still producing a representative consensus ranking following the given set of base rankings. A family of exact and approximate bias mitigation solutions is designed that collectively guarantee fair consensus generation in a rich variety of decision scenarios. Tailored optimization strategies for these new fair rank aggregation services are potentially transformative -- pushing the envelope on practical ethical applications of AI for fair decision making. Further, these fair rank aggregation methods are integrated into carefully designed mixed-initiative interactive systems to facilitate understanding and trust in the consensus building process and to empower human decision makers to engage in an AI-driven consensus building process to reach unbiased decisions. The AEQUITAS technology supports comparative analytics to visualize the impact of individual rankings on the final consensus outcome, as well as to explore the trade-offs between theaccuracy of the aggregation and fairness criteria. User studies to understand how well fairness imposed by the AEQUITAS system aligns with human decision makers' perception of fairness are undertaken. Further, the effectiveness of the AEQUITAS technology in supporting multiple analysts to collaborate towards reaching a fair shared decision is studied.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着人工智能在社会技术系统中的应用越来越普遍,人们不仅经常相互合作,而且还经常与自动化技术合作,做出对他人生活产生实际和持久影响的判断。这对公平和公正地对待历史上处于不利地位的群体具有严重影响,因为分析师可能遭受的隐性偏见与人工智能系统中无意中嵌入的算法偏见之间存在潜在的相互作用。迫切需要解决围绕交互式决策支持系统的开放问题,并采用有效的偏见缓解技术,以确保公平的结果。这个名为AEQUITAS的项目反映了正义和公平的概念,研究了当代群体公平概念在经典任务中的应用,即汇总候选人的多个排名,以得出一个整体公平的共识决策。由此产生的方法和工具可以帮助决策者减轻他们所遭受的隐性偏见,以及无意中嵌入自动人工智能排名算法的算法偏见。这项技术将在招聘、贷款和教育等领域产生影响,这些领域的决策通常是由委员会根据多个决策者的意见做出的,必须有公正的结果。AEQUITAS项目为历史上的弱势群体提供公平的机会,让他们获得可能改变生活的机会,如工作、贷款和教育资源,这是一个潜在的改变游戏规则的社会结果。此外,通过WPI数据科学REU暑期网站和WPI数据科学跨学科学位课程,将项目活动与未来STEM劳动力的培训相结合,重点关注女性和代表性不足的学生,也代表了重大的广泛影响。AEQUITAS承诺通过提供第一个基于共识的交互式偏见缓解解决方案,在道德人工智能领域开辟新的基础。在建立共识的过程中,对弱势群体的不公平偏见可能以何种方式产生,并在最终排名中体现出来,预计将获得新的见解。作为AEQUITAS的基础,公平排名聚合问题使用捕获普遍群体公平标准的约束优化公式建模。这种新的保持公平性的优化模型确保了被排名的候选人的公平性,同时仍然根据给定的基本排名集产生具有代表性的共识排名。设计了一系列精确和近似的偏差缓解解决方案,共同保证在丰富多样的决策场景中公平地产生共识。为这些新的公平排名聚合服务量身定制的优化策略具有潜在的变革性——推动人工智能在公平决策方面的实际道德应用。此外,这些公平的排名汇总方法被整合到精心设计的混合倡议互动系统中,以促进共识建立过程中的理解和信任,并使人类决策者能够参与人工智能驱动的共识建立过程,以达成公正的决策。AEQUITAS技术支持比较分析,以可视化个人排名对最终共识结果的影响,以及探索汇总准确性和公平性标准之间的权衡。进行用户研究,了解AEQUITAS系统所施加的公平性与人类决策者对公平性的看法是如何一致的。此外,还研究了AEQUITAS技术在支持多名分析人员协作以达成公平共享决策方面的有效性。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MANI-RANK: Multi-attribute and Intersectional Fairness for Consensus Ranking
MANI-RANK:共识排名的多属性和交叉公平性
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Cachel, K.;Rundensteiner, E.;Harrison, L.
- 通讯作者:Harrison, L.
Help or Hinder? Evaluating the Impact of Fairness Metrics and Algorithms in Visualizations for Consensus Ranking
- DOI:10.1145/3593013.3594108
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Hilson Shrestha;Kathleen Cachel;Mallak Alkhathlan;Elke A. Rundensteiner;Lane Harrison
- 通讯作者:Hilson Shrestha;Kathleen Cachel;Mallak Alkhathlan;Elke A. Rundensteiner;Lane Harrison
Fairer Together: Mitigating Disparate Exposure in Kemeny Rank Aggregation
- DOI:10.1145/3593013.3594085
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Kathleen Cachel;Elke A. Rundensteiner
- 通讯作者:Kathleen Cachel;Elke A. Rundensteiner
FairFuse: Interactive Visual Support for Fair Consensus Ranking
- DOI:10.1109/vis54862.2022.00022
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Hilson Shrestha;Kathleen Cachel;Mallak Alkhathlan;Elke A. Rundensteiner;Lane Harrison
- 通讯作者:Hilson Shrestha;Kathleen Cachel;Mallak Alkhathlan;Elke A. Rundensteiner;Lane Harrison
Rank aggregation algorithms for fair consensus
- DOI:10.14778/3407790.3407855
- 发表时间:2020-07
- 期刊:
- 影响因子:2.5
- 作者:C. Kuhlman;Elke A. Rundensteiner
- 通讯作者:C. Kuhlman;Elke A. Rundensteiner
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elke Rundensteiner其他文献
Explaining deep multi-class time series classifiers
- DOI:
10.1007/s10115-024-02073-y - 发表时间:
2024-03-04 - 期刊:
- 影响因子:3.100
- 作者:
Ramesh Doddaiah;Prathyush S. Parvatharaju;Elke Rundensteiner;Thomas Hartvigsen - 通讯作者:
Thomas Hartvigsen
Elke Rundensteiner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elke Rundensteiner', 18)}}的其他基金
REU Site: Applied Artificial Intelligence for Advanced Applications
REU 网站:高级应用的应用人工智能
- 批准号:
2349370 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: ELEMENTS: Tuning-free Anomaly Detection Service
合作研究:Elements:免调优异常检测服务
- 批准号:
2103832 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NRT-HDR: Data-Driven Sustainable Engineering for a Circular Economy
NRT-HDR:数据驱动的循环经济可持续工程
- 批准号:
2021871 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
REU SITE: DATA SCIENCE RESEARCH FOR HEALTHY COMMUNITIES IN THE DIGITAL AGE
REU 网站:数字时代健康社区的数据科学研究
- 批准号:
1852498 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
III:Small: Outlier Discovery Paradigm
III:小:异常值发现范式
- 批准号:
1910880 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
III: Small: Scalable Event Trend Analytics For Data Stream Inquiry
III:小型:用于数据流查询的可扩展事件趋势分析
- 批准号:
1815866 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
REU SITE: Data Science Research for Safe, Sustainable and Healthy Communities
REU 站点:安全、可持续和健康社区的数据科学研究
- 批准号:
1560229 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Student Travel Support for U.S. Graduate Students to Participate in EDBT/ICDT 2012
为美国研究生参加 EDBT/ICDT 2012 提供学生旅行支持
- 批准号:
1144371 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CGV: Small: Model-Driven Visual Analytics on Streams
CGV:小型:模型驱动的流可视化分析
- 批准号:
1117139 - 财政年份:2011
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
- 批准号:
2232055 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
RI: Small: The Surprising Power of Sequential Fair Allocation Mechanisms
RI:小:顺序公平分配机制的惊人力量
- 批准号:
2327057 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
- 批准号:
2232054 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: IIS-III: Small Towards Fair Outlier Detection
协作研究:IIS-III:小到公平的异常值检测
- 批准号:
2310481 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Interpretable Fair Machine Learning: Frameworks, Robustness, and Scalable Algorithms
协作研究:CIF:小型:可解释的公平机器学习:框架、稳健性和可扩展算法
- 批准号:
2343869 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
- 批准号:
2334936 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Interpretable Fair Machine Learning: Frameworks, Robustness, and Scalable Algorithms
协作研究:CIF:小型:可解释的公平机器学习:框架、稳健性和可扩展算法
- 批准号:
2246417 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: RI: AF: Small: Long-Term Impact of Fair Machine Learning under Strategic Individual Behavior
合作研究:RI:AF:小:战略性个人行为下公平机器学习的长期影响
- 批准号:
2202699 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Interpretable Fair Machine Learning: Frameworks, Robustness, and Scalable Algorithms
协作研究:CIF:小型:可解释的公平机器学习:框架、稳健性和可扩展算法
- 批准号:
2153607 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Interpretable Fair Machine Learning: Frameworks, Robustness, and Scalable Algorithms
协作研究:CIF:小型:可解释的公平机器学习:框架、稳健性和可扩展算法
- 批准号:
2153606 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant