Harold Cohen & Leslie Mezei: Pioneering Times of Algorithmic Art.Two Book Projects
哈罗德·科恩
基本信息
- 批准号:242187768
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2014
- 资助国家:德国
- 起止时间:2013-12-31 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The extraordinary work of British artist, Harold Cohen, as far as it is of algorithmic origin, will be registered, critically analyzed and presented from the perspective of visual appearance vs. algorithmic background. Cohen's unique position within the 50 years history of algorithmic art will be characterized.This (perhaps first) systematic investigation of the work of an artist who has almost exclusively worked algorithmically will start a new chapter of art history. We will use the experience gained from here for more and similar investigations (long-term orientation).Additionally, work done in the 1960s by Leslie Mezei in computer science at the University of Toronto will also be studied for a broader context. Thus we open up for the characteristic contradiction of aesthetics and algorithmics.Harold Cohen was an established artist (twice represented at documenta) before he settled in California (around 1970) and started into his second career by only working with computers. Like an erratic rock, his work has since then appeared in the domain of computer art (and art history in general), but also in Artificial Intelligence. We will investigate his work- in its inherent algorithmic as well as aesthetic structures,- in its connection to contemporary non-machinic art,- from the perspective of my theory of the algorithmic image,- and from a semiotic perspective.To this end we do these steps:- register Cohen's algorithmic visual works,- collect his publications,- thoroughly study the publications and selected works of art,- study his software and machines for drawing and painting,- develop a schema of phases of his work, combining algorithmics and aesthetics,- engage in a lasting personal discourse (in particular, two visits to San Diego).The results of this research will be made publicly accessible in the existing compArt database. The main contribution will be a scholarly book.In addition to researching Cohen's work, Leslie Mezei's archive will be analyzed and made available. At a time, when Cohen was still painting traditionally, Mezei discovered the potential of computing in the fine arts. As early as 1964, he began writing about and documenting algorithmic art. He also contributed himself to its development. His archive contains material about early events of the emerging movement, at least from North America. The work will focus on editing and extending an unpublished manuscript of Mezei's.This project provides the foundation for a serious interpretation of algorithmic art in the contexts of art history and art theory. Today, algorithmic (and digital) art is no longer in doubt. However, a thorough analysis is still missing. The project will bridge the gap between algorithmic-constructive and aesthetic-interpretative thinking.
英国艺术家Harold Cohen的非凡作品,就其算法起源而言,将从视觉外观与算法背景的角度进行注册,批判性分析和呈现。科恩在算法艺术50年历史中的独特地位将被描述。这(也许是第一次)对一位几乎完全使用算法工作的艺术家的作品进行系统调查,将开启艺术史的新篇章。我们将利用从这里获得的经验进行更多和类似的调查(长期方向)。此外,莱斯利Mezei在多伦多大学计算机科学在20世纪60年代所做的工作也将在更广泛的背景下进行研究。因此,我们打开了美学和算法的特点矛盾。哈罗德科恩是一个既定的艺术家(两次代表文献展)之前,他定居在加州(1970年左右),并开始了他的第二个职业生涯,只与计算机工作。就像一块不稳定的岩石,他的作品从那时起就出现在计算机艺术领域(以及一般的艺术史),但也出现在人工智能领域。我们将研究他的作品--在其固有的算法和美学结构中,--在其与当代非机器艺术的联系中,--从我的算法图像理论的角度,--并从符号学的角度。- 注册科恩的算法视觉作品,-收集他的出版物,-彻底研究出版物和选定的艺术作品,-研究他的软件和绘画机器,-开发他的工作阶段的模式,结合算法和美学,- 进行持久的个人讨论(特别是两次访问圣地亚哥)。这项研究的结果将在现有的compArt数据库中公开。主要贡献将是一本学术著作。除了研究科恩的工作,莱斯利梅泽的档案将被分析和提供。在科恩还在传统绘画的时候,Mezei发现了计算在美术中的潜力。早在1964年,他就开始撰写和记录算法艺术,他也为算法艺术的发展做出了贡献。他的档案包含了关于新兴运动早期事件的材料,至少来自北美。这项工作将专注于编辑和扩展Mezei的未发表手稿。该项目为在艺术史和艺术理论的背景下认真解释算法艺术提供了基础。今天,算法(和数字)艺术不再受到怀疑。然而,仍然缺乏全面的分析。该项目将弥合算法建设性思维和美学解释性思维之间的差距。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Think the Image, Don't Make It! On Algorithmic Thinking, Art Education, and Re-Coding
思考图像,不要实现它!
- DOI:10.7559/citarj.v9i3.458
- 发表时间:
- 期刊:
- 影响因子:0.2
- 作者:Frieder Nake ;Susan Grabowski
- 通讯作者:Susan Grabowski
We Find the Aesthetics in Between – A Remark on Algoritmic Art
我们在两者之间找到美学——关于算法艺术的评论
- DOI:10.28937/1000106249
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Frieder Nake
- 通讯作者:Frieder Nake
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Frieder Nake其他文献
Professor Dr. Frieder Nake的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
图边理想的Cohen-Macaulay性质及代数不变量
- 批准号:12101165
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
模情形下有限群的不变式环的Cohen-Macaulay性质、余不变式环及Noether数的研究
- 批准号:12101375
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
在若干代数图类上与Cohen-Macaulay相关的组合代数性质研究
- 批准号:11961017
- 批准年份:2019
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
线性正则域Cohen类时频分布理论及其在信号分离和检测中的应用
- 批准号:61901223
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
Cohen-Macaulay Auslander 代数
- 批准号:11526168
- 批准年份:2015
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
单项式理想与Cohen-Macaulay性质
- 批准号:11271250
- 批准年份:2012
- 资助金额:48.0 万元
- 项目类别:面上项目
局部上同调与Cohen-Macaulay同调维数
- 批准号:11226058
- 批准年份:2012
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
Cohen-Lenstra预测中若干问题的研究
- 批准号:11101424
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Cohen-Macaulay環の諸階層の研究
科恩-麦考利环的层次结构研究
- 批准号:
22KJ2843 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Studies on generic Cohen-Macaulay modules and their applications
通用Cohen-Macaulay模及其应用研究
- 批准号:
23K12954 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Geometric Vertex Decomposability and Cohen-Macaulyness of Toric Ideals of Graphs
图环面理想的几何顶点可分解性和Cohen-Macaulyness
- 批准号:
575811-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Cohen-Lenstra heuristics at the bad primes
坏质数的 Cohen-Lenstra 启发法
- 批准号:
2608453 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
Analysis of the Topological Structure of the functor category of Cohen-Macaulay modules and its applications to representation types of algebras
Cohen-Macaulay模函子范畴的拓扑结构分析及其在代数表示类型中的应用
- 批准号:
21K03213 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Square-free Monomial Cohen-Macaulay Ideals
无平方单项式科恩-麦考利理想
- 批准号:
553845-2020 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Stratification of Cohen-Macaulay rings
科恩-麦考利环的分层
- 批准号:
20K14299 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
可換環論:非Gorenstein Cohen-Macaulay環論の展開
交换环理论:非戈伦斯坦科恩-麦考利环理论的发展
- 批准号:
20J10517 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Study on relationship among ring theoretic invariants for non Cohen-Macaulay rings
非Cohen-Macaulay环环理论不变量关系的研究
- 批准号:
20K03550 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Cohen-Macaulay property of ideals associated with subspace arrangements
与子空间排列相关的理想的科恩-麦考利性质
- 批准号:
19K03456 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




