Machine Learning Guided Biophysical Model Development of Amino Acid and tRNA Effects on Translation-Elongation Speed
机器学习引导的氨基酸和 tRNA 对翻译延伸速度影响的生物物理模型开发
基本信息
- 批准号:2031584
- 负责人:
- 金额:$ 75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project leverages artificial intelligence to accelerate the discovery of factors governing protein synthesis by the ribosome, a complex molecular machine. Large amounts of data can be rapidly generated concerning the molecular biology of the cell. Yet making sense of massive amounts of data to gain understanding is a significant challenge. Specifically, during the process of protein synthesis by the ribosome there are so many molecular factors interacting that determining which of those regulate the speed at which it functions is difficult. In this project, artificial intelligence is used to identify putative causal features, which then become the starting point for the development of physics and chemistry based models that can explain the physical relationship between those variables and the rate at which the ribosome functions. Because this approach is general, it will be transferable between topics, thereby accelerating the process of going from data to insight across a range of problems. This research will make it possible to predict the influence of amino acid mutations on protein synthesis. Bioengineering and biopharmaceutical communities can exploit this information for optimization of protein expression. Finally, this proposal will promote diversity in the sciences by teaching high-school students from underrepresented groups topics in machine learning and interest them in STEM fields.Chemistry- and physics-based models of biomolecular processes are critical tools used throughout the biochemistry and molecular biology communities to explain the relationship between molecular behaviors and experimental data. A bottleneck in the development of such models is the identification of the essential features driving the biomolecular process of interest. Machine learning models, which often make accurate predictions with no explanatory power, offer the potential to rapidly identify these essential features. This project will create a workflow that will leverage this beneficial feature of machine learning to guide biophysical model development, and thereby accelerate the process of going from data to insight. The PI’s lab recently demonstrated that the identity of the transfer RNAs and amino acids in the A- and P-sites of the ribosome predictably and causally modulate the translation elongation speed at the A-site. This project will apply the machine learning workflow to model and understand the molecular origins of this effect, which are currently unknown. First, an ensemble machine learning approach will be utilized that identifies the robust physicochemical features of amino-acid and tRNA molecules at the E-, P- and A-sites that accurately predict translation speed. Next, these robust and predictive physicochemical properties will be used as a starting point to construct physical models that explain why those properties are important. Finally, the predictions and insights from the models will be experimentally tested in vivo by a collaborator.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目利用人工智能来加速发现控制核糖体合成蛋白质的因素,核糖体是一种复杂的分子机器。可以快速产生大量关于细胞分子生物学的数据。然而,理解海量数据以获得理解是一个巨大的挑战。具体地说,在核糖体合成蛋白质的过程中,有如此多的分子因素相互作用,以至于很难确定其中哪些因素调节其功能的速度。在这个项目中,人工智能被用来识别假定的因果特征,然后成为开发基于物理和化学的模型的起点,这些模型可以解释这些变量之间的物理关系和核糖体发挥作用的速度。因为这种方法是通用的,所以它可以在主题之间转换,从而加快了从数据到对一系列问题的洞察的过程。这项研究将使预测氨基酸突变对蛋白质合成的影响成为可能。生物工程和生物制药社区可以利用这些信息来优化蛋白质表达。最后,这项提议将通过向来自代表性不足群体的高中生教授机器学习主题并使他们对STEM领域感兴趣来促进科学的多样性。基于化学和物理的生物分子过程模型是整个生物化学和分子生物学社区用来解释分子行为和实验数据之间关系的关键工具。这类模型发展的一个瓶颈是识别驱动感兴趣的生物分子过程的基本特征。机器学习模型提供了快速识别这些基本特征的可能性,这些模型经常做出准确的预测,而没有解释能力。这个项目将创建一个工作流程,利用机器学习的这一有益功能来指导生物物理模型的开发,从而加快从数据到洞察的过程。PI的实验室最近证明,核糖体A-和P-位的转移RNA和氨基酸的一致性可以预测并因果地调节A-位的翻译延伸速度。这个项目将应用机器学习工作流来建模和理解这种效应的分子起源,目前尚不清楚。首先,将利用集成机器学习方法来识别氨基酸和tRNA分子在E-、P-和A-位点上的强大物理化学特征,这些特征可以准确地预测翻译速度。接下来,这些强健和可预测的物理化学性质将被用作构建物理模型的起点,以解释为什么这些性质很重要。最后,来自模型的预测和洞察力将由合作者在体内进行实验测试。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edward O'Brien其他文献
HEAT SHOCK PROTEIN 27 IMPROVES ARTERIAL REPAIR FOLLOWING ARTERIAL INJURY BY REGULATION OF VASCULAR ENDOTHELIAL GROWTH FACTOR
- DOI:
10.1016/s0735-1097(13)61828-8 - 发表时间:
2013-03-12 - 期刊:
- 影响因子:
- 作者:
Trevor Simard;Xiaoli Ma;Benjamin Hibbert;F. Ramirez;Tara Seibert;Edward O'Brien - 通讯作者:
Edward O'Brien
P075 SER-287, AN INVESTIGATIONAL MICROBIOME THERAPEUTIC, INDUCES WIDESPREAD METABOLOMIC AND HOST TRANSCRIPTIONAL CHANGES RELATED TO CLINICAL REMISSION IN PATIENTS WITH ACTIVE MILD-TO-MODERATE ULCERATIVE COLITIS
- DOI:
10.1053/j.gastro.2019.11.290 - 发表时间:
2020-02-01 - 期刊:
- 影响因子:
- 作者:
Liyang Diao;Edward O'Brien;Christopher Ford;Jennifer Wortman;John Aunins;Matthew Henn - 通讯作者:
Matthew Henn
85 - SER-287, an Investigational Microbiome Therapeutic, Induces Remission and Endoscopic Improvement in a Placebo-Controlled, Double-Blind Randomized Trial in Patients with Active Mild-to-Moderate Ulcerative Colitis
- DOI:
10.1016/s0016-5085(18)30561-4 - 发表时间:
2018-05-01 - 期刊:
- 影响因子:
- 作者:
Misra Bharat;John Curran;Hans H. Herfarth;Kiran Jagarlamudi;Caterina Oneto;Bal R. Bhandari;Gregory Wiener;David H. Kerman;Alan C. Moss;Roger Pomerantz;Jeff Zhao;Patricia Bernardo;Sheri Simmons;Liyang Diao;Edward O'Brien;Matthew R. Henn;Michele Trucksis - 通讯作者:
Michele Trucksis
An unusual foreign body associated with an endodontically treated tooth: report of a case
- DOI:
10.1016/s0099-2399(82)80098-8 - 发表时间:
1982-09-01 - 期刊:
- 影响因子:
- 作者:
Ralph Bellizzi;Ronald D. Woody;Edward O'Brien;John Fraser - 通讯作者:
John Fraser
Tu2019 - Engraftment of Ser-287, an Investigational Microbiome Therapeutic, is Related to Clinical Remission in a Placebo-Controlled, Double-Blind Randomized Trial (Seres-101) in Patients with Active Mild to Moderate Ulcerative Colitis (UC)
- DOI:
10.1016/s0016-5085(18)34478-0 - 发表时间:
2018-05-01 - 期刊:
- 影响因子:
- 作者:
Sheri Simmons;Liyang Diao;Edward O'Brien;Meghan Chafee;Jeff Zhao;Patricia Bernardo;David Cook;Michele Trucksis;Matthew R. Henn - 通讯作者:
Matthew R. Henn
Edward O'Brien的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edward O'Brien', 18)}}的其他基金
Center: National Synthesis Center for Emergence in the Molecular and Cellular Sciences
中心:国家分子与细胞科学新兴综合中心
- 批准号:
2335029 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Cooperative Agreement
MoCeIS-DCL: Planning Workshops for Synthesis of Massively Parallel Assays and Molecular Physiology
MoCeIS-DCL:大规模并行分析和分子生理学综合规划研讨会
- 批准号:
2133405 - 财政年份:2021
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Conference: Protein Folding on the Ribosome
会议:核糖体上的蛋白质折叠
- 批准号:
2037516 - 财政年份:2020
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
CONFERENCE: Protein Folding on the Ribosome; December 14-16, 2019; Berlin, Germany
会议:核糖体上的蛋白质折叠;
- 批准号:
1937300 - 财政年份:2019
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
EAGER: Measuring transcriptome-wide translation initiation rates from a single experiment
EAGER:通过单个实验测量转录组范围内的翻译起始率
- 批准号:
1904087 - 财政年份:2019
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
ABI INNOVATION: Physical Bioinformatics Tools for Measuring Translation Rates from Next-Generation Sequencing Data
ABI 创新:用于测量下一代测序数据翻译率的物理生物信息学工具
- 批准号:
1759860 - 财政年份:2018
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
CAREER: The origins of codon translation rates and their consequences for nascent protein behavior
职业:密码子翻译率的起源及其对新生蛋白质行为的影响
- 批准号:
1553291 - 财政年份:2016
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
NSF PostDoctoral Research Fellowship in Biology
NSF 生物学博士后研究奖学金
- 批准号:
0805647 - 财政年份:2008
- 资助金额:
$ 75万 - 项目类别:
Fellowship Award
NSF East Asia Summer Institutes for US Graduate Students
NSF 东亚美国研究生暑期学院
- 批准号:
0714360 - 财政年份:2007
- 资助金额:
$ 75万 - 项目类别:
Fellowship Award
Collaborative Research: Comprehension Processes During Reading
合作研究:阅读期间的理解过程
- 批准号:
9631040 - 财政年份:1996
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Creating an All-optical, Mechanobiology-guided, and Machine-learning-powered High-throughput Framework to Elucidate Neural Dynamics
创建全光学、机械生物学引导和机器学习驱动的高通量框架来阐明神经动力学
- 批准号:
2308574 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Optimization and Validation of a Cost-effective Image-Guided Automated Extracapsular Extension Detection Framework through Interpretable Machine Learning in Head and Neck Cancer
通过可解释的机器学习在头颈癌中优化和验证具有成本效益的图像引导自动囊外扩展检测框架
- 批准号:
10648372 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
CRII: SCH: Domain-guided Machine Learning for Clinical Decision Support in Epilepsy
CRII:SCH:用于癫痫临床决策支持的领域引导机器学习
- 批准号:
2344731 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
LEAPS-MPS: Machine Learning-guided Identification of Mechanically Stabilizing Solid-state Electrolytes
LEAPS-MPS:机器学习引导的机械稳定固态电解质的识别
- 批准号:
2316667 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
CAREER: Reading To Learn: Language-Guided Machine Learning
职业:从阅读中学习:语言引导的机器学习
- 批准号:
2239363 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
Machine Learning Guided Development of Tailored Polyolefin Molecular Structures for Lightweighting Applications
机器学习引导开发适合轻量化应用的定制聚烯烃分子结构
- 批准号:
578510-2022 - 财政年份:2022
- 资助金额:
$ 75万 - 项目类别:
Alliance Grants
Data Mining and Machine Learning Guided QM/MM and QM-Cluster Modeling of Enzymatic Reactions
数据挖掘和机器学习引导的酶反应 QM/MM 和 QM 簇建模
- 批准号:
10685949 - 财政年份:2022
- 资助金额:
$ 75万 - 项目类别:
Machine-learning guided experimental approaches for developing a robust nanoscale delivery platform for the treatment of pancreatic cancer
机器学习引导的实验方法,用于开发用于治疗胰腺癌的强大纳米级递送平台
- 批准号:
2749190 - 财政年份:2022
- 资助金额:
$ 75万 - 项目类别:
Studentship
Collaborative Research: MRA: Advancing process understanding of lake water quality to macrosystem scales with knowledge-guided machine learning
合作研究:MRA:通过知识引导的机器学习将湖泊水质的过程理解推进到宏观系统尺度
- 批准号:
2213549 - 财政年份:2022
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
MFB: Targeting the Dark Proteome by Machine-learning-guided Protein Design
MFB:通过机器学习引导的蛋白质设计瞄准暗蛋白质组
- 批准号:
2226816 - 财政年份:2022
- 资助金额:
$ 75万 - 项目类别:
Standard Grant