SHF:Small: Machine Learning Approach for Fast Electromigration Analysis and Full-Chip Assessment

SHF:Small:用于快速电迁移分析和全芯片评估的机器学习方法

基本信息

  • 批准号:
    2007135
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Electromigration (EM) has become one of the most critical design issues and limiting factors for nanometer VLSI designs because of the shrinking size and increasing power density of the interconnects as technology scales down to sub 5nm. Due to its importance, many advances have been made recently in EM modeling and assessment techniques. However, fast and full-chip level EM analysis and validation still remain a challenging problem as completely modeling the EM failure process requires solving partial differential equations of hydrostatic stress in large interconnects. This will become even more difficult for full-chip level EM sign-off analysis. At the same time, machine learning, especially deep learning based on deep neural networks (DNN) such as convolutional neural networks (CNN), generative adversarial networks (GAN) and auto-encoders, is gaining much attention due to transformative successes in the many cognitive tasks. How to apply deep-learning techniques to learn and encode laws of physics and help to solve nonlinear partial differential equations, however, still remains in its infancy. The new EM optimization techniques will enhance the integrated-circuit (IC) design industry’s ability to improve VLSI long-term reliability amid continued aggressive transistor scaling and increasing power density. This research will also contribute significantly to the core knowledge and technologies of machine learning and data-driven based nonlinear dynamic-system modeling and advanced numerical approaches. This award will enable the investigator to hire more female and underrepresented minority students to further contribute to the diversity in America’s science and technology workforce.This project will explore novel and transformative EM modeling and full-chip EM-induced lifetime assessment techniques based on data-driven deep learning and advanced numerical methods. First, the research will investigate and design new deep-learning-based techniques for transient hydrostatic stress analysis for multi-segment interconnect trees. The project will explore DNN network structures such as CNN, GAN, autoencoders, and physics-informed neural networks for both void nucleation and post-voiding phases of EM failure processes in both circuit and full-chip levels. Second, the project will develop fast analytic and semi-analytic solutions for the stress-based partial differential equations for general multi-segment interconnects considering Joule-heating and thermal-migration effects. At the full-chip level, a coupled multi-physics analysis for fast EM sign-off check of on-chip power ground networks will be investigated.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着工艺尺寸缩小到5nm以下,互连线的尺寸不断缩小,功率密度不断增加,因此电迁移(EM)已成为纳米VLSI设计中最关键的设计问题和限制因素之一。由于其重要性,EM建模和评估技术最近取得了许多进展。然而,快速和全芯片级EM分析和验证仍然是一个具有挑战性的问题,因为完全建模EM故障过程需要求解大型互连中的静水应力的偏微分方程。这对于全芯片级EM签准分析将变得更加困难。 与此同时,机器学习,特别是基于深度神经网络(DNN)的深度学习,如卷积神经网络(CNN),生成对抗网络(GAN)和自动编码器,由于在许多认知任务中取得了变革性的成功,正受到越来越多的关注。然而,如何应用深度学习技术来学习和编码物理定律,并帮助解决非线性偏微分方程,仍处于起步阶段。新的EM优化技术将增强集成电路(IC)设计行业的能力,以提高VLSI的长期可靠性,在持续积极的晶体管规模和增加功率密度。 这项研究还将为机器学习和基于数据驱动的非线性动力系统建模和高级数值方法的核心知识和技术做出重大贡献。该项目将探索基于数据驱动的深度学习和先进数值方法的新颖和变革性EM建模和全芯片EM诱导寿命评估技术。首先,该研究将调查和设计新的基于深度学习的技术,用于多段互连树的瞬态静水压力分析。该项目将探索DNN网络结构,如CNN,GAN,自动编码器和物理信息神经网络,用于电路和全芯片级EM故障过程的空洞成核和空洞后阶段。其次,该项目将开发快速的解析和半解析解的应力为基础的偏微分方程的一般多段互连考虑焦耳加热和热迁移效应。在全芯片级,将研究用于片上电源接地网络的快速EM签核检查的耦合多物理场分析。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
GridNetOpt: Fast Full-Chip EM-Aware Power Grid Optimization Accelerated by Deep Neural Networks
Robust power grid network design considering EM aging effects for multi-segment wires
  • DOI:
    10.1016/j.vlsi.2020.10.001
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Han Zhou;Liang Chen;S. Tan
  • 通讯作者:
    Han Zhou;Liang Chen;S. Tan
HierPINN-EM: Fast Learning-Based Electromigration Analysis for Multi-Segment Interconnects Using Hierarchical Physics-Informed Neural Network
HierPINN-EM:使用分层物理信息神经网络对多段互连进行基于快速学习的电迁移分析
Runtime Long-Term Reliability Management Using Stochastic Computing in Deep Neural Networks
在深度神经网络中使用随机计算的运行时长期可靠性管理
Fast Physics-Based Electromigration Analysis for Full-Chip Networks by Efficient Eigenfunction-Based Solution
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sheldon Tan其他文献

Sheldon Tan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sheldon Tan', 18)}}的其他基金

SHF:Small: Learning-based Fast Analysis and Fixing for Electromigration Damage
SHF:Small:基于学习的电迁移损伤快速分析和修复
  • 批准号:
    2305437
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF:Small: Data-Driven Thermal Monitoring and Run-Time Management for Manycore Processor and Chiplet Designs
SHF:Small:适用于多核处理器和小芯片设计的数据驱动热监控和运行时管理
  • 批准号:
    2113928
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
IRES Track I: Development of Global Scientists and Engineers by Collaborative Research on Reliability-Aware IC Design
IRES Track I:通过可靠性意识 IC 设计合作研究促进全球科学家和工程师的发展
  • 批准号:
    1854276
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF:Small: EM-Aware Physical Design and Run-Time Optimization for sub-10nm 2D and 3D Integrated Circuits
SHF:Small:10nm 以下 2D 和 3D 集成电路的电磁感知物理设计和运行时优化
  • 批准号:
    1816361
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Small: Physics-Based Electromigration Assessment and Validation For Reliability-Aware Design and Management
SHF:小型:基于物理的电迁移评估和验证,用于可靠性设计和管理
  • 批准号:
    1527324
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Thermal-Sensitive System-Level Reliability Analysis and Management for Multi-Core and 3D Microprocessors
多核和 3D 微处理器的热敏系统级可靠性分析和管理
  • 批准号:
    1255899
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
US-Singapore Planning Visit: Collaborative Research on Design and Verification of 60Ghz RF/MM Integrated Circuits
美国-新加坡计划访问:60Ghz RF/MM 集成电路设计与验证合作研究
  • 批准号:
    1051797
  • 财政年份:
    2011
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
IRES: Development of Global Scientists and Engineers by Collaborative Research on Variation-Aware Nanometer IC Design
IRES:通过变异感知纳米 IC 设计的合作研究来促进全球科学家和工程师的发展
  • 批准号:
    1130402
  • 财政年份:
    2011
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Small: Variational and Bound Performance Analysis of Nanometer Mixed-Signal/Analog Circuits
SHF:小型:纳米混合信号/模拟电路的变分和束缚性能分析
  • 批准号:
    1116882
  • 财政年份:
    2011
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF:Small:GPU-Based Many-Core Parallel Simulation of Interconnect and High-Frequency Circuits
SHF:Small:基于 GPU 的互连和高频电路多核并行仿真
  • 批准号:
    1017090
  • 财政年份:
    2010
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
  • 批准号:
    2326895
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Core: Small: Real-time and Energy-Efficient Machine Learning for Robotics Applications
SHF:核心:小型:用于机器人应用的实时且节能的机器学习
  • 批准号:
    2341183
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Sub-millisecond Topological Feature Extractor for High-Rate Machine Learning
合作研究:SHF:小型:用于高速机器学习的亚毫秒拓扑特征提取器
  • 批准号:
    2234921
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Small: Explainable Machine Learning for Better Design of Very Large Scale Integrated Circuits
SHF:小:可解释的机器学习,用于更好地设计超大规模集成电路
  • 批准号:
    2322713
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
  • 批准号:
    2326894
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Sub-millisecond Topological Feature Extractor for High-Rate Machine Learning
合作研究:SHF:小型:用于高速机器学习的亚毫秒拓扑特征提取器
  • 批准号:
    2234920
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Sub-millisecond Topological Feature Extractor for High-Rate Machine Learning
合作研究:SHF:小型:用于高速机器学习的亚毫秒拓扑特征提取器
  • 批准号:
    2234919
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Small: Expediting the Execution of Machine Learning Applications on Multi-GPU Infrastructure with Architecture Awareness and Runtime Support
SHF:小型:通过架构意识和运行时支持加快多 GPU 基础设施上机器学习应用程序的执行
  • 批准号:
    2154973
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Core: Small: Real-time and Energy-Efficient Machine Learning for Robotics Applications
SHF:核心:小型:用于机器人应用的实时且节能的机器学习
  • 批准号:
    2128036
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Small: Towards High-Performance Machine Learning on Graphs
SHF:小型:迈向图上的高性能机器学习
  • 批准号:
    2127207
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了